Аннотация
Новая коронавирусная инфекция COVID-19 поражает не только респираторный тракт, но и опорно-двигательный аппарат, включая скелетную мускулатуру. В обзоре обобщены литературные данные, посвященные рабдомиолизу, ассоциированному с COVID-19. Акцент в обзоре делается на возможные механизмы поражения мышц при COVID-19 и диагностические методы, включая лучевые методы диагностики.
Литература
1. Crum-Cianflone N.F. Bacterial, fungal, parasitic, and viral myositis // Clin Microbiol Rev. – 2008. – V. 21. – № 3. – P. 473–494. doi: 10.1128/CMR.00001-08.
2. Ayala E. et al. Rhabdomyolysis associated with 2009 influenza A (H1N1) // JAMA. – 2009. – V. 302. – № 17. – P. 1863–1864. doi: 10.1001/jama.2009.1582.
3. Taxbro K. et al. Rhabdomyolysis and acute kidney injury in severe COVID-19 infection // BMJ Case Rep CP. – 2020. – V. 13. – № 9. – P. 237616. doi: 10.1136/bcr-2020-237616.
4. Geng Y. et al. Rhabdomyolysis is associated with in-hospital mortality in patients with COVID-19 // Shock (Augusta, Ga.). – 2021. – V. 56. – № 3. – P. 360. doi: 10.1097/SHK.0000000000001725.
5. Chedid N.R. et al. COVID-19 and rhabdomyolysis // J Gen Intern Med. – 2020. – V. 35. – № 10. – P. 3087–3090. doi: 10.1007/s11606-020-06039-y.
6. Albaba I. et al. Incidence, risk factors, and outcomes of rhabdomyolysis in hospitalized patients with COVID-19 infection // Cureus. – 2021. – V. 13. – № 11. doi: 10.7759/cureus.19802.
7. Hannah J.R. et al. Skeletal muscles and COVID-19: a systematic review of rhabdomyolysis and myositis in SARS-CoV-2 infection // Clin Exp Rheumatol. – 2022. – V. 40. – P. 329–338. doi: 10.55563/clinexprheumatol/mkfmxt.
8. Ferrandi P.J. et al. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies // J Appl Physiol. – 2020. – V. 129. – № 4. – P. 864–867. doi: 10.1152/japplphysiol.00321.2020.
9. Hoffmann M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell. – 2020. – V. 181. – № 2. – P. 271–280. doi: 10.1016/j.cell.2020.02.052.
10. Shang J. et al. Cell entry mechanisms of SARS-CoV-2 // Proc Nat Acad Sci. – 2020. – V. 117. – № 21. – P. 11727–11734. doi: 10.1073/pnas.2003138117.
11. De Giorgio M.R. et al. The impact of SARS-CoV-2 on skeletal muscles // Acta Myologica. – 2020. – V. 39. – № 4. – P. 307. doi: 10.36185/2532-1900-034.
12. Dalakas M.C. Guillain-Barré syndrome: the first documented COVID-19-triggered autoimmune neurologic disease: more to come with myositis in the offing // Neurol Neuroimmunol Neuroinflam. – 2020. – V. 7. – № 5. doi: 10.1212/NXI.0000000000000781.
13. Aschman T. et al. Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died // JAMA Neurol. – 2021. – Vol. 78. – № 8. – P. 948–960. doi: 10.1001/jamaneurol.2021.2004.
14. Shi Z. et al. Diaphragm pathology in critically ill patients with COVID-19 and postmortem findings from 3 medical centers // JAMA Intern Med. – 2021. – V. 181. – № 1. – P. 122–124. doi: 10.1001/jamainternmed.2020.6278.
15. Megremis S. et al. Antibodies against immunogenic epitopes with high sequence identity to SARS-CoV-2 in patients with autoimmune dermatomyositis // Ann Rheum Dis. – 2020. – V. 79. – № 10. – P. 1383–1386. doi: 10.1136/annrheumdis-2020-217522.
16. Saud A. et al. COVID-19 and myositis: what we know so far // Curr Rheumatol Rep. – 2021. – V. 23. – № 8. – P. 1–16. doi: 10.1007/s11926-021-01023-9.
17. Singer M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) // JAMA. – 2016. – V. 315. – № 8. – P. 801–810. doi: 10.1001/jama.2016.0287.
18. Ali A.M. et al. Skeletal muscle damage in COVID-19: a call for action // Medicina. – 2021. – V. 57. – № 4. – P. 372. doi: 10.3390/medicina57040372.
19. Бояринцев В.В. и др. Рабдомиолиз. Междисциплинарный подход. – М.: ГЭОТАР-Медиа. – 2023. – 144 с. doi: 10.33029/9704-7316-0-RIA-2023-I-144. [Boyarintsev V.V. et al. Rhabdomyolysis. Interdisciplinary approach. – Moscow: GEOTAR-Media. – 2023. – 144 р. In Russian]. doi: 10.33029/9704-7316-0-RIA-2023-I-144.
20. Yu J.S. et al. Myoglobin offers higher accuracy than other cardiac-specific biomarkers for the prognosis of COVID-19 // Front Cardiovasc Med. – 2021. – P. 903. doi: 10.3389/fcvm.2021.686328.
21. Chen H. et al. Development and validation of a nomogram using on admission routine laboratory parameters to predict in‐hospital survival of patients with COVID‐19 // J Med Virol. – 2021. – V. 93. – № 4. – P. 2332–2339. doi: 10.1002/jmv.26713.
22. Shetty N.D. et al. Post-COVID-19 myositis based on magnetic resonance imaging: a case report // Cureus. – 2022. – V. 14. – № 10. doi: 10.7759/cureus.30293.
23. Федорова А.А. Инструментальные методы диагностики заболеваний мышечной ткани. В кн.: Миопатии в практике клинициста: руководство для врачей. Под ред. И.Н. Пасечника, С.А. Бернс, В.В. Бояринцева. – М.: ГЭОТАР-Медиа. – 2023. – С. 128–180. doi: 10.33029/9704-7648-2-MPK-2023-1448. [Fedorova A.A. Instrumental methods of diagnosis of diseases of muscle tissue. Myopathies in the practice of a clinician: a guide for doctors. – Moscow: GEOTAR-Media. – 2023. – P. 128–180. In Russian]. doi: 10.33029/9704-7648-2-MPK-2023-1448.
24. Jin Q.T. Rhabdomyolysis as potential complication associated with 2019 novel coronavirus disease // Emerg Infect Dis. – 2020. – V. 26. doi: 10.3201/eid2607.200445.
25. Кутепов Д.Е. и др. Рабдомиолиз. В кн.: Миопатии в практике клинициста: руководство для врачей. Под ред. И.Н. Пасечника, С.А. Бернс, В.В. Бояринцева. – М.: ГЭОТАР-Медиа. – 2023. – С. 348–394. doi: 10.33029/9704-7648-2-MPK-2023-1448. [Kutepov D.E., Fedorova A.A., Boyarintsev V.V., Pasechnik I.N., Rhabdomyolysis // Myopathies in the practice of a clinician: a guide for doctors. – Moscow: GEOTAR-Media. – 2023. – P. 348–394. In Russian]. doi: 10.33029/9704-7648-2-MPK-2023-1448.