ОБЗОР МЕТОДОВ ВИЗУАЛИЗАЦИИ ДЛЯ ОЦЕНКИ ОТВЕТА НА ЛЕЧЕНИЕ МЕТАСТАЗОВ В КОСТИ ПРИ РАКЕ ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ И МОЛОЧНОЙ ЖЕЛЕЗЫ
Е. А. Николаева
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
Е. В. Тарачкова
Ж. В. Шейх
А. П. Дунаев
И. Е. Тюрин
PDF

Ключевые слова

метастазы
рак
предстательная железа

Как цитировать

[1]
Е. А. Николаева, Е. В. Тарачкова, Ж. В. Шейх, А. П. Дунаев, и И. Е. Тюрин, ОБЗОР МЕТОДОВ ВИЗУАЛИЗАЦИИ ДЛЯ ОЦЕНКИ ОТВЕТА НА ЛЕЧЕНИЕ МЕТАСТАЗОВ В КОСТИ ПРИ РАКЕ ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ И МОЛОЧНОЙ ЖЕЛЕЗЫ, КМКВ, т. 3, сс. 107-114, дек. 2022.
PDF

Аннотация

Костные метастазы являются крайне частыми осложнениями, связанными с некоторыми видами рака, часто негативно влияющими на качество жизни и функциональное состояние пациентов, поэтому раннее выявление необходимо для проведения немедленных лечебных мероприятий, позволяющих снизить риск скелетных осложнений, улучшить выживаемость и качество жизни. Не существует консенсуса или универсального стандартного подхода для выявления метастазов в костях у онкологических больных, основанного на результатах визуализации. Представлен обзор текущего понимания биологических механизмов, посредством которых опухоли распространяются на кость, и описание методов визуализации, доступных для диагностики метастазов в кости и мониторинга их ответа на онкологическое лечение, уделено особое внимание пациентам с раком молочной железы и простаты. Согласно имеющимся в настоящее время данным, возможно использование методов визуализации следующего поколения, включая диффузионно-взвешенную МРТ всего тела, ПЭТ/КТ и ПЭТ/МРТ с новыми радиофармацевтическими препаратами вместо классической комбинации КТ и сцинтиграфии костей.
PDF

Литература

1. Coleman R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity //Clin Cancer Res. – 2006. – V. 12. – P. 6243-6249.
2. Amelot A. et al. Spine metastasis in patients with prostate cancer: survival prognosis assessment. //Prostate. – 2021. - V. 81. – P. 91-101.
3. Jemal A. et al. Cancer statistics, 2010. //CA Cancer J Clin. – 2010. – V. 60. – P. 277-300.
4. Reddington J.A. et al. Imaging characteristic analysis of metastatic spine lesions from breast, prostate, lung, and renal cell carcinomas for surgical planning: osteolytic versus osteoblastic. //Surg Neurol Int. – 2016. – V. 7. – P. S361-5.
5. Kawai A.T. et al. Incidence of skeletal-related events in patients with castration-resistant prostate cancer: an observational retrospective cohort study in the US. //Prostate Cancer. – 2019. – P. 5971615.
6. Hong S. et al. Bone metastasis and skeletal-related events in patients with solid cancer: a Korean nationwide health insurance database study. //PLoS ONE. – 2020. – V. 15. – P. e0234927.
7. Roodman G.D. Mechanisms of bone metastasis. //N Engl J Med. – 2004. – V. 350. – P. 1655-64.
8. Smerage J.B. et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. //J Clin Oncol. – 2014. – V. 32. – P. 3483-9.
9. Schellhammer P.F. et al. Lower baseline prostate-specific antigen is associated with a greater overall survival benefit from sipuleucel- T in the Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT) trial. //Urology. – 2013. – V. 81. – P. 1297-302.
10. Ryan C.J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. //N Engl J Med. – 2013. – V. 368. – P. 138-48.
11. Crawford E.D. et al. Challenges and recommendations for early identification of metastatic disease in prostate cancer. //Urology. – 2014. – V. 83. – P. 664-9.
12. Tosoian J.J. et al. Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations. //Nat Rev Urol. – 2017. – V.14. – P. 15-25.
13. Trovo M. et al. Radical radiation therapy for oligometastatic breast cancer P. results of a prospective phase II trial. //Radiother Oncol. 2018. – V.126. – P. 177-80.
14. Palma D.A. et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET phase II randomized trial. //J Clin Oncol. – 2020. – V.38. – P. 2830-8.
15. Lattouf J.B., Saad F. Preservation of bone health in prostate cancer. //Curr Opin Support Palliat Care. - 2007. – V.1. - P. 192-7.
16. Hillengass J. et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. //Lancet Oncol. – 2019. – V.20. – P. e302-12.
17. Petralia G. et al. Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses. //Radiol Med. – 2019. – V.124. – P. 218- 33.
18. Padhani A.R. et al. Rationale for modernising imaging in advanced prostate cancer. //Eur Urol Focus. – 2017. – V.3. – P. 223-39.
19. Bruckmann N.M. et al. Prospective comparison of CT and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients: initial results. //PLoS ONE. – 2021.
20. Choi J., Raghavan M. Diagnostic imaging and image-guided therapy of skeletal metastases. //Cancer Control J Moffitt Cancer Cent. – 2012. – V.19. – P. 102-12.
21. von Moos R. et al. Initiation of bone-targeted agents in patients with bone metastases and breast or castrate-resistant prostate cancer actively treated in routine clinical practice in Europe. //Bone. – 2022. – V.154. – P. 116243.
22. O’Sullivan G.J., Carty F.L., Cronin C.G. Imaging of bone metastasis: an update. //World J Radiol. – 2015. – V.7. – P. 202-11.
23. Perez-Lopez R. et al. Imaging diagnosis and follow-up of advanced prostate cancer P. clinical perspectives and state of the art. //Radiology. – 2019. – V.292. – P. 273-86.
24. Allan A.L. et al. Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. //Breast Dis. – 2006. – V.26. – P. 87-98.
25. Santini D. et al. New molecular targets in bone metastases. //Cancer Treat Rev. – 2010. – V.36(Suppl 3). – P. S6-10.
26. Lipton A., Goessl C. Clinical development of anti-RANKL therapies for treatment and prevention of bone metastasis. //Bone. – 2011. – V.48. – P. 96-9.
27. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. //J Nucl Med. – 2005. – V.46. – P. 1356-67.
28. Padhani A.R. et al. Therapy monitoring of skeletal metastases with whole-body diffusion MRI. //J Magn Reson Imaging. – 2014. – V.39. – P. 1049-78.
29. Rybak L.D., Rosenthal D.I. Radiological imaging for the diagnosis of bone metastases. //Q J Nucl Med. – 2001. – V.45. – P. 53-64.
30. Karnholz R., Sze G. Current imaging in spinal metastatic disease. //Semin Oncol. – 1991. – V.18. – P. 158-69.
31. Yang H.L. et al. Diagnosis of bone metastases: a meta-analysis comparing (18)FDG-PET, CT, MRI and bone scintigraphy. //Eur Radiol. – 2011. – V.21. – P. 2604-17.
32. Lee Y.H. et al. Spectral parametric segmentation of contrast-enhanced dual-energy CT to detect bone metastasis: feasibility sensitivity study using whole-body bone scintigraphy. //Acta Radiol. – 2015. – V.56. – P. 458-64.
33. Buus T.W. et al. Comparison of contrast-enhanced CT, dual-layer detector spectral CT, and whole-body MRI in suspected metastatic breast cancer P. a prospective diagnostic accuracy study. //Eur Radiol. – 2021. – V.31. – P. 8838- 49.
34. Luna A., Vilanova J.C., Alcala M.L. Total body MRI in early detection of bone metastasis and its indication in comparison to bone scan and other imaging techniques. //Arch Esp Urol. – 2015. – V.68. – P. 371-90.
35. Vilanova J.C. et al. Assessment of musculoskeletal malignancies with functional MR imaging. //Magn Reson Imaging Clin N Am. – 2016. – V.24. – P. 239-59.
36. Vilanova J.C. et al. Update on whole-body MRI in musculoskeletal applications. //Semin Musculoskelet Radiol. – 2019. – V.23. – P. 312-23
37. Sun G. et al. Whole-body magnetic resonance imaging is superior to skeletal scintigraphy for the detection of bone metastatic tumors: a meta-analysis. //Eur Rev Med Pharmacol Sci. – 2020. – V.24. – P. 7240-52.
38. Jambor I. et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. //Acta Oncol. – 2016. – V.55. – P. 59-67.
39. Shen G. et al. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. //Skeletal Radiol. – 2014. – V.43. – P. 1503-13
40. Sun. Li M. et al. Diagnostic value of whole-body DWI with background body suppression plus calculation of apparent diffusion coefficient at 3 T versus (18)F-FDG PET/CT for detection of bone metastases. //AJR Am J Roentgenol. – 2020. – V.214. - P. 446-54.
41. Wu L.M. et al. Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. //J Magn Reson Imaging. - 2011. – V.34. – P. 128-35.
42. Morone M. et al. Whole-body MRI: current applications in oncology. //AJR Am J Roentgenol. - 2017. – V.209. – P. W336-49
43. Mohler J.L. et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. //J Natl Compr Canc Netw. – 2019. – V.17. – P. 479-505.
44. Lecouvet F.E. et al. Can whole-body magnetic resonance imaging with diffusion- weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? //Eur Urol. – 2012. – V.62. – P. 68-75.
45. Woolf D.K., Padhani A.R., Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? //Ann Oncol. - 2015. – V.26. – P. 1048-57.
46. Gnanasegaran G. et al. Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. //Semin Nucl Med. – 2009. – V.39. – P. 380-95.
47. Zhang Y. et al. Multiple metastasislike bone lesions in scintigraphic imaging. //J Biomed Biotechnol. - 2012. – V.2012. – P. 957364.
48. Cuccurullo V. et al. Bone metastases radiopharmaceuticals P. an overview. //Curr Radiopharm. – 2013. – V.6. – P. 41-7.
49. Azad G.K., Cook G.J. Multi-technique imaging of bone metastases P. spotlight on PET-CT. //Clin Radiol. – 2016. – V.71. – P. 620-31.
50. Cook G.J.R. PET and PET/CT imaging of skeletal metastases. //Cancer Imaging. - 2010. – V.10. – P. 1-8
51. Torigian D.A. et al. Functional imaging of cancer with emphasis on molecular techniques. //CA Cancer J Clin. – 2007. – V.57. – P. 206-24.
52. Wondergem M. et al. A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. //Nucl Med Commun. – 2013. – V.34. – P. 935-45.
53. Beheshti M. et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. //Mol Imaging Biol. – 2010. – V.12. – P. 98-107.
54. Garzon J.R.G. et al. (68)Ga-PSMA PET/CT in prostate cancer. //Rev Esp Med Nucl Imagen Mol. - 2018. – V.37. – P. 130-8.
55. Hofman M.S. et al. Prostatespecific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. //Lancet. – 2020. – V.395. – P. 1208-16.
56. Cerci J.J. et al. Diagnostic performance and clinical impact of (68)Ga-PSMA-11 imaging in early relapsed prostate cancer after radical therapy: a prospective multicenter study (IAEA-PSMA study). //J Nucl Med. – 2021.
57. Pyka T. et al. Comparison of bone scintigraphy and (68)Ga-PSMA PET for skeletal staging in prostate cancer. //Eur J Nucl Med Mol Imaging. – 2016. – V.43. - P. 2114-21.
58. Costelloe C.M. et al. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. //Lancet Oncol. – 2009. – V.10. – P. 606-14.
59. Yu H.H.M., Tsai Y.Y., Hoffe S.E. Overview of diagnosis and management of metastatic disease to bone. //Cancer Control J Moffitt Cancer Cent. – 2012. – V.19. – P. 84-91.
60. Shibata H. et al. Diagnosis and treatment of bone metastasis: comprehensive guideline of the Japanese Society of Medical Oncology, Japanese Orthopedic Association, Japanese Urological Association, and Japanese Society for Radiation Oncology. //ESMO Open. – 2016. – V.1. – P. e000037.
61. Garcia-Saenz J.A. et al. SEOM clinical guidelines in early-stage breast cancer 2015. //Clin Transl Oncol. – 2015. – V.17. – P. 939-45.
62. Cardoso F. et al. Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. //Ann Oncol. – 2019. – V.30. – P. 1674.
63. Cardoso F. et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4)dagger. //Ann Oncol. – 2018. – V.29. – P. 1634-57.
64. Rajarubendra N., Bolton D., Lawrentschuk N. Diagnosis of bone metastases in urological malignancies—an update. //Urology. – 2010. – V.76. – P. 782-90.
65. Keyaerts M. et al. Phase I study of 68Ga-HER2- nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. – 2016. – V.57. – P. 27-33.
66. Massicano A.V.F., Marquez-Nostra B.V., Lapi S.E. Targeting HER2 in nuclear medicine for imaging and therapy. Mol Imaging. - 2018. – V. 17 P. 1536012117745386.
67. Evangelista L et al. Choline PET or PET/CT and biochemical relapse of prostate cancer P. a systematic review and meta-analysis. Clin Nucl Med. – 2013. – V.38. – P. 305-14.