ВЛИЯНИЕ САГИТТАЛЬНОГО БАЛАНСА ВЕРТЕБРО-ПЕЛЬВИ-ФЕМОРАЛЬНОГО КОМПЛЕКСА НА ПОЛОЖЕНИЕ ЧАШКИ ПРИ ТОТАЛЬНОМ ЭНДОПРОТЕЗИРОВАНИИ ТАЗОБЕДРЕННОГО СУСТАВА
И. В. Хохлов
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
И. А. Смышляев
А. В. Рогощенкова
Й. Х. Гази
С. И. Гильфанов
PDF

Ключевые слова

эндопротезирования
саггитальный баланс
вертебро-пельви-феморальная мобильность

Как цитировать

Хохлов И. В., Смышляев И. А., Рогощенкова А. В., Гази Й. Х., Гильфанов С. И. ВЛИЯНИЕ САГИТТАЛЬНОГО БАЛАНСА ВЕРТЕБРО-ПЕЛЬВИ-ФЕМОРАЛЬНОГО КОМПЛЕКСА НА ПОЛОЖЕНИЕ ЧАШКИ ПРИ ТОТАЛЬНОМ ЭНДОПРОТЕЗИРОВАНИИ ТАЗОБЕДРЕННОГО СУСТАВА // КРЕМЛЕВСКАЯ МЕДИЦИНА<br><i>клинический вестник</i&gt;. 2022. Т. № 3. С. 99-106.
PDF

Аннотация

В данной работе проведен обзор литературы по вопросам сагиттального баланса вертебро-пельви-феморального (ВПФ) комплекса при эндопротезировании тазобедренного сустава, даны рекомендации по использованию терминологии, обобщены различные классификации ВПФ мобильности и описаны соответствующие им алгоритмы лечения. При нарушении сагиттального баланса ВПФ комплекса увеличивается частота вывихов эндопротеза, снижается качество жизни, функциональный результат и удовлетворенность результатами лечения. Существует два основных типа нарушения биомеханики поясничного отдела позвоночника и таза - ригидность и гипермобильность. При установке чашки необходимо стремиться к безопасной функциональной зоне (БФЗ), которую подбирают ориентируясь на сагиттальный баланс.
PDF

Литература

1. Haffer H. et al. The impact of spinopelvic mobility on arthroplasty: implications for hip and spine surgeons //Journal of Clinical Medicine. – 2020. – V. 9. – №. 8. – P. 2569. doi: 10.3390/jcm9082569
2. Dargel J. et al. Dislocation following total hip replacement //Deutsches Ärzteblatt International. – 2014. – V. 111. – №. 51-52. – P. 884. doi: 10.3238/arztebl.2014.0884
3. Heckmann N. et al. Late dislocation following total hip arthroplasty: spinopelvic imbalance as a causative factor //JBJS. – 2018. – V. 100. – №. 21. – P. 1845-1853. doi: 10.2106/JBJS.18.00078
4. Malkani A. L. et al. Total hip arthroplasty in patients with previous lumbar fusion surgery: are there more dislocations and revisions? //The Journal of Arthroplasty. – 2018. – V. 33. – №. 4. – P. 1189-1193. doi: 10.1016/j.arth.2017.10.041
5. Sultan A. A. et al. The impact of spino-pelvic alignment on total hip arthroplasty outcomes: a critical analysis of current evidence //The Journal of arthroplasty. – 2018. – V. 33. – №. 5. – P. 1606-1616. doi: 10.1016/j.arth.2017.11.021
6. An V. V. G. et al. Prior lumbar spinal fusion is associated with an increased risk of dislocation and revision in total hip arthroplasty: a meta-analysis //The Journal of Arthroplasty. – 2018. – V. 33. – №. 1. – P. 297-300. doi: 10.1016/j.arth.2017.08.040
7. Gausden E. B. et al. Risk factors for early dislocation following primary elective total hip arthroplasty //The Journal of arthroplasty. – 2018. – V. 33. – №. 5. – P. 1567-1571. e2. doi: 10.1016/j.arth.2017.12.034
8. Nam D. et al. The impact of total hip arthroplasty on pelvic motion and functional component position is highly variable //The Journal of Arthroplasty. – 2017. – V. 32. – №. 4. – P. 1200-1205. doi: 10.1016/j.arth.2016.11.008
9. Maratt J. D. et al. Pelvic tilt in patients undergoing total hip arthroplasty: when does it matter? //The Journal of arthroplasty. – 2015. – V. 30. – №. 3. – P. 387-391. doi: 10.1016/j.arth.2014.10.014
10. Cho Y. J. et al. Recurrent hip dislocation following total hip arthroplasty: treatment with sagittal spinal deformity correction: a case report //JBJS Case Connector. – 2017. – V. 7. – №. 1. – P. e14. doi: 10.2106/JBJS.CC.16.00144
11. Ochi H. et al. Importance of the spinopelvic factors on the pelvic inclination from standing to sitting before total hip arthroplasty //European Spine Journal. – 2016. – V. 25. – №. 11. – P. 3699-3706. doi: 10.1007/s00586-015-4217-2
12. Ike H. et al. Spine-pelvis-hip relationship in the functioning of a total hip replacement //JBJS. – 2018. – V. 100. – №. 18. – P. 1606-1615. doi: 10.2106/JBJS.17.00403
13. Husson J. L. et al. The lumbar-pelvic-femoral complex: applications in hip pathology //Orthopaedics & Traumatology: Surgery & Research. – 2010. – V. 96. – №. 4. – P. S10-S16. doi: 10.1016/j.otsr.2010.03.007
14. Innmann M. M. et al. Can spinopelvic mobility be predicted in patients awaiting total hip arthroplasty? A prospective, diagnostic study of patients with end-stage hip osteoarthritis //The bone & joint journal. – 2019. – V. 101. – №. 8. – P. 902-909. doi: 10.1302/0301-620X.101B8.BJJ-2019-0106.R1
15. Lazennec J. Y., Brusson A., Rousseau M. A. Lumbar-pelvic-femoral balance on sitting and standing lateral radiographs //Orthopaedics & Traumatology: Surgery & Research. – 2013. – V. 99. – №. 1. – P. S87-S103. doi: 10.1016/j.otsr.2012.12.003
16. Vrtovec T. et al. A review of methods for evaluating the quantitative parameters of sagittal pelvic alignment //The Spine Journal. – 2012. – V. 12. – №. 5. – P. 433-446. doi: 10.1016/j.spinee.2012.02.013
17. Ali Khan M. A., Brakenbury P. H., Reynolds I. S. Dislocation following total hip replacement //The Journal of bone and joint surgery. British volume. – 1981. – V. 63. – №. 2. – P. 214-218. doi: 10.1302/0301-620X.63B2.7217144
18. Attenello J. D., Harpstrite J. K. Implications of spinopelvic mobility on total hip arthroplasty: review of current literature //Hawai'i Journal of Health & Social Welfare. – 2019. – V. 78. – №. 11 Suppl 2. – P. 31.
19. Schwab F. et al. Sagittal plane considerations and the pelvis in the adult patient //Spine. – 2009. – V. 34. – №. 17. – P. 1828-1833. doi: 10.1097/BRS.0b013e3181a13c08
20. Wan Z. et al. Imaging and navigation measurement of acetabular component position in THA //Clinical orthopaedics and related research. – 2009. – V. 467. – №. 1. – P. 32-42. doi: 10.1007/s11999-008-0597-5
21. Schwab F. J. et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis //Spine. – 2013. – V. 38. – №. 13. – P. E803-E812. doi: 10.1097/BRS.0b013e318292b7b9
22. Grammatopoulos G. et al. Integrating the combined sagittal index reduces the risk of dislocation following total hip replacement //JBJS. – 2022. – V. 104. – №. 5. – P. 397-411. doi: 10.2106/JBJS.21.00432
23. Homma Y. et al. Pelvic mobility before and after total hip arthroplasty //International Orthopaedics. – 2020. – V. 44. – №. 11. – P. 2267-2274. doi: 10.1007/s00264-020-04688-6
24. Legaye J. et al. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves //European Spine Journal. – 1998. – V. 7. – №. 2. – P. 99-103. doi: 10.1007/s005860050038
25. Ishida T. et al. Changes in pelvic tilt following total hip arthroplasty //Journal of Orthopaedic Science. – 2011. – V. 16. – №. 6. – P. 682-688. doi: 10.1007/s00776-011-0153-0
26. Ala Eddine T. et al. Variations of pelvic anteversion in the lying and standing positions analysis of 24 control subjects and implications for CT measurement of position of a prosthetic cup //Surgical and Radiologic Anatomy. – 2001. – V. 23. – №. 2. – P. 105-110. doi: 10.1007/s00276-001-0105-z
27. Stefl M. et al. Spinopelvic mobility and acetabular component position for total hip arthroplasty //The Bone & Joint Journal. – 2017. – V. 99. – №. 1_Supple_A. – P. 37-45. doi: 10.1302/0301-620X.99B1.BJJ-2016-0415.R1
28. Phan D., Bederman S. S., Schwarzkopf R. The influence of sagittal spinal deformity on anteversion of the acetabular component in total hip arthroplasty //The bone & joint journal. – 2015. – V. 97. – №. 8. – P. 1017-1023. doi: 10.1302/0301-620X.97B8.35700
29. Barrey C. et al. Compensatory mechanisms contributing to keep the sagittal balance of the spine //European Spine Journal. – 2013. – V. 22. – №. 6. – P. 834-841. doi: 10.1007/s00586-013-3030-z
30. Esposito C. I. et al. Does degenerative lumbar spine disease influence femoroacetabular flexion in patients undergoing total hip arthroplasty? //Clinical Orthopaedics and Related Research®. – 2016. – V. 474. – №. 8. – P. 1788-1797. doi: 10.1007/s11999-016-4787-2
31. Lewinnek G. E. et al. Dislocations after total hip-replacement arthroplasties //J Bone Joint Surg Am. – 1978. – V. 60. – №. 2. – P. 217-220.
32. Tezuka T. et al. Functional safe zone is superior to the Lewinnek safe zone for total hip arthroplasty: why the Lewinnek safe zone is not always predictive of stability //The Journal of arthroplasty. – 2019. – V. 34. – №. 1. – P. 3-8. doi: 10.1016/j.arth.2018.10.034
33. Abdel M. P. et al. What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position //Clinical Orthopaedics and Related Research®. – 2016. – V. 474. – №. 2. – P. 386-391. doi: 10.1007/s11999-015-4432-5
34. Lazennec J. Y. et al. Hip-spine relationship: a radio-anatomical study for optimization in acetabular cup positioning //Surgical and Radiologic Anatomy. – 2004. – V. 26. – №. 2. – P. 136-144. doi: 10.1007/s00276-003-0195-x
35. Luthringer T. A., Vigdorchik J. M. A preoperative workup of a “hip-spine” total hip arthroplasty patient: a simplified approach to a complex problem //The Journal of Arthroplasty. – 2019. – V. 34. – №. 7. – P. S57-S70. doi: 10.1016/j.arth.2019.01.012
36. Tannast M. et al. Estimation of pelvic tilt on anteroposterior X-rays—a comparison of six parameters //Skeletal radiology. – 2006. – V. 35. – №. 3. – P. 149-155. doi: 10.1007/s00256-005-0050-8
37. DelSole E. M. et al. Total hip arthroplasty in the spinal deformity population: does degree of sagittal deformity affect rates of safe zone placement, instability, or revision? //The Journal of arthroplasty. – 2017. – V. 32. – №. 6. – P. 1910-1917. doi: 10.1016/j.arth.2016.12.039
38. Kanawade V., Dorr L. D., Wan Z. Predictability of acetabular component angular change with postural shift from standing to sitting position //JBJS. – 2014. – V. 96. – №. 12. – P. 978-986. doi: 10.2106/JBJS.M.00765
39. Weng W. et al. The effect of total hip arthroplasty on sagittal spinal–pelvic–leg alignment and low back pain in patients with severe hip osteoarthritis //European Spine Journal. – 2016. – V. 25. – №. 11. – P. 3608-3614. doi: 10.1007/s00586-016-4444-1