РАННЯЯ ДИАГНОСТИКА БРОНХОЛЕГОЧНОЙ ДИСПЛАЗИИ: АКТУАЛЬНЫЙ ВЕКТОР НАУЧНЫХ ИССЛЕДОВАНИЙ
М. А. Басаргина
ФГАУ «Национальный научно-практический центр здоровья детей» Минздрава РФ, Москва
А. П. Фисенко
ФГАУ «Национальный научно-практический центр здоровья детей» Минздрава РФ, Москва
И. В. Давыдова
ФГАУ «Национальный научно-практический центр здоровья детей» Минздрава РФ, Москва
В. А. Бондарь
ФГАУ «Национальный научно-практический центр здоровья детей» Минздрава РФ, Москва
PDF

Ключевые слова

бронхолегочная дисплазия
недоношенные дети
факторы риска

Как цитировать

Басаргина М. А., Фисенко А. П., Давыдова И. В., Бондарь В. А. РАННЯЯ ДИАГНОСТИКА БРОНХОЛЕГОЧНОЙ ДИСПЛАЗИИ: АКТУАЛЬНЫЙ ВЕКТОР НАУЧНЫХ ИССЛЕДОВАНИЙ // Кремлевская медицина. Клинический вестник. 2021. Т. № 1. С. 90-99.
PDF

Аннотация

бронхолегочная дисплазия (БЛД) была описана как новое заболевание легких у недоношенных детей с респираторным дистресс синдромом (РДС), подвергшихся искусственной вентиляции легких (ИВЛ) с дополнительной оксигенацией в неонатальном периоде, что приводило к повреждению легких с определенными гистопатологическими особенностями в дыхательных путях. Этиологическая многофакторность заболевания в настоящее время не вызывает сомнений. Достаточно изучены патогенез, диагностика и лечение данной патологии. Проводятся многолетние исследования клинико-функциональных последствий перенесенной бронхолегочной дисплазии. Вместе с тем, предикторы формирования БЛД изучены недостаточно. Актуальным направлением исследований в настоящее время является изучение нарушения ангиогенеза малого круга кровообращения при формировании данного заболевания, в том числе на молекулярно-генетическом уровне, с целью разработки диагностических программ и терапевтических стратегий профилактики развития данной патологии у недоношенных детей
PDF

Литература

1. Northway Jr W. H., Rosan R. C., Porter D. Y. Pulmonary disease following respirator therapy of hyaline-membrane disease: bronchopulmonary dysplasia //New England Journal of Medicine. – 1967. – V. 276. – №. 7. – P. 357-368.
2. Овсянников Д. Ю., Кузьменко Л. Г. Бронхолегочная дисплазия //Пульмонология. – 2020. – №. 4. – С. 176. [Ovsyannikov D.Y. et al. Bronchopulmonary dysplasia // Pulmonology. – 2020. – №. 4. – P. 176. In Russian].
3. Abman S. H., Bancalari E., Jobe A. The evolution of bronchopulmonary dysplasia after 50 years //American journal of respiratory and critical care medicine. – 2017. – V. 195. – P. 421-424.
4. Abman S. H. et al. Interdisciplinary care of children with severe bronchopulmonary dysplasia //The Journal of pediatrics. – 2017. – V. 181. – P. 12-28.
5. Jensen E. A. et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. An evidence-based approach //American journal of respiratory and critical care medicine. – 2019. – V. 200. – №. 6. –P. 751-759.
6. Crump C. et al. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study //The Lancet Child & Adolescent Health. – 2019. – V. 3. – №. 6. – P. 408-417.
7. Higgins R. D. et al. Bronchopulmonary dysplasia: executive summary of a workshop //The Journal of pediatrics. – 2018. – V. 197. – P. 300-308.
8. Gortner L. et al. Rates of bronchopulmonary dysplasia in very preterm neonates in Europe: results from the MOSAIC cohort //Neonatology. – 2011. – V. 99. – №. 2. – P. 112-117.
9. Gortner L., Reiss I., Hilgendorff A. Bronchopulmonary dysplasia and intrauterine growth restriction //The Lancet. – 2006. – V. 368. – №. 9529. – P. 28.
10. Bose C. et al. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation //Pediatrics. – 2009. – V. 124. – №. 3. – P. e450-e458.
11. Wedgwood S. et al. Postnatal growth restriction augments oxygen-induced pulmonary hypertension in a neonatal rat model of bronchopulmonary dysplasia //Pediatric research. – 2016. – V. 80. – №. 6. – P. 894-902.
12. Underwood M. A. et al. Somatic growth and the risks of bronchopulmonary dysplasia and pulmonary hypertension: connecting epidemiology and physiology //Canadian journal of physiology and pharmacology. – 2019. – V. 97. – №. 3. – P. 197-205.
13. Mol B. W. J. et al. Pre-eclampsia //The Lancet. – 2016. –V. 387. – №. 10022. – P. 999-1011.
14. Sircar M, Thadhani R, Karumanchi SA. Pathogenesis of preeclampsia //Current Opinion in Nephrology and Hypertension. – 2015. – V. 24. – №. 2. – P. 131-8.
15. Schrey-Petersen S., Stepan H. Anti-angiogenesis and preeclampsia in 2016 //Current hypertension reports. – 2017. – V. 19. – №. 1. – P. 6.
16. Maynard S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia //The Journal of clinical investigation. – 2003. – V. 111. – №. 5. – P. 649-658.
17. Levine R. J. et al. Circulating angiogenic factors and the risk of preeclampsia //New England journal of medicine. – 2004. – V. 350. – №. 7. – P. 672-683.
18. Zeisler H. et al. Predictive value of the sFlt-1: PlGF ratio in women with suspected preeclampsia //N Engl J Med. – 2016. – V. 374. – P. 13-22.
19. Allen R. E. et al. Abnormal blood biomarkers in early pregnancy are associated with preeclampsia: a meta-analysis //European Journal of Obstetrics & Gynecology and Reproductive Biology. – 2014. – V. 182. – P. 194-201.
20. Wu F. T. H. et al. A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use //Journal of cellular and molecular medicine. – 2010. – V. 14. – №. 3. – P. 528-552.
21. Mestan K. K. et al. Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension //Placenta. – 2014. –V. 35. – №. 8. – P. 570-574.
22. Mestan K. K. et al. Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension //The Journal of pediatrics. – 2017. – V. 185. – P. 33-41.
23. Korzeniewski S. J. et al. Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth factor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study //American journal of obstetrics and gynecology. – 2016. – V. 214. – №. 5. – P. 629. e1-629. e17.
24. Lassus P. et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn //American journal of respiratory and critical care medicine. – 2001. – V. 164. – №. 10. – P. 1981-1987.
25. Hasan J. et al. Soluble vascular endothelial growth factor receptor 1 in tracheal aspirate fluid of preterm neonates at birth may be predictive of bronchopulmonary dysplasia/chronic lung disease //Pediatrics. – 2009. – V. 123. – №. 6. – P. 1541-1547.
26. Kim C. J. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance //American journal of obstetrics and gynecology. – 2015. –V. 213. – №. 4. – P. S29-S52.
27. Watterberg K. L. et al. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops //Pediatrics. – 1996. – V. 97. – №. 2. – P. 210-215.
28. Van Marter L. J. et al. Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants //The Journal of pediatrics. – 2002. – V. 140. – №. 2. – P. 171-176.
29. Hansen A. R. et al. Maternal preeclampsia predicts the development of bronchopulmonary dysplasia //The Journal of pediatrics. – 2010. – V. 156. – №. 4. – P. 532-536.
30. Yoon B. H. et al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes //American journal of obstetrics and gynecology. – 2001. – V. 185. – №. 5. – P. 1130-1136.
31. Tita A. T. N., Andrews W. W. Diagnosis and management of clinical chorioamnionitis //Clinics in perinatology. – 2010. – V. 37. – №. 2. – P. 339-354.
32. Kallapur S. G. et al. Vascular changes after intra-amniotic endotoxin in preterm lamb lungs //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2004. – V. 287. – №. 6. – P. L1178-L1185.
33. Mandell E. et al. Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2015. – V. 309. – №. 12. – P. L1438-L1446.
34. Been J. V. et al. Bronchoalveolar lavage fluid from preterm infants with chorioamnionitis inhibits alveolar epithelial repair //Respiratory Research. – 2009. – V. 10. – №. 1. – P. 1-12.
35. Mandell E. et al. Vitamin D treatment improves survival and infant lung structure after intra-amniotic endotoxin exposure in rats: potential role for the prevention of bronchopulmonary dysplasia //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2014. – V. 306. – №. 5. – P. L420-L428.
36. Morrow L. A. et al. Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants //American journal of respiratory and critical care medicine. – 2017. – V. 196. – №. 3. – P. 364-374.
37. Sekhon H. S. et al. Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys //American journal of respiratory and critical care medicine. – 2001. –V. 164. – №. 6. – P. 989-994.
38. Macaubas C. et al. Association between antenatal cytokine production and the development of atopy and asthma at age 6 years //The Lancet. – 2003. – V. 362. – №. 9391. – P. 1192-1197.
39. Coalson J. J. Pathology of bronchopulmonary dysplasia //Seminars in perinatology. – WB Saunders, 2006. – V. 30. – №. 4. – P. 179-184.
40. Steinhorn R. et al. Chronic pulmonary insufficiency of prematurity: developing optimal endpoints for drug development //J Pediatr. – 2017. – V. 191. – №. 15. – P. e1-21.
41. Alvira C. M., Morty R. E. Can we understand the pathobiology of bronchopulmonary dysplasia? //The Journal of pediatrics. – 2017. – V. 190. – P. 27-37.
42. Stark A. et al. A pathogenic relationship of bronchopulmonary dysplasia and retinopathy of prematurity? A review of angiogenic mediators in both diseases //Frontiers in pediatrics. – 2018. – V. 6. – P. 1-14.
43. Abman S. H. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease //Membrane Receptors, Channels and Transporters in Pulmonary Circulation. – 2010. – P. 323-335.
44. Sehgal A. et al. Preterm growth restriction and bronchopulmonary dysplasia: the vascular hypothesis and related physiology //The Journal of physiology. – 2019. – V. 597. – №. 4. – P. 1209-1220.
45. Askie L. M. et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials //Pediatrics. – 2011. – V. 128. – №. 4. – P. 729-739.
46. Levesque B. M. et al. Low urine vascular endothelial growth factor levels are associated with mechanical ventilation, bronchopulmonary dysplasia and retinopathy of prematurity //Neonatology. – 2013. – V. 104. – №. 1. – P. 56-64.
47. Been J. V. et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia //Pediatric research. – 2010. – V. 67. – №. 1. – P. 83-89.
48. Meller S., Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships //Experimental lung research. – 2012. – V. 38. – №. 4. – P. 192-203.
49. Wallace B. et al. Anti–sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2018. – V. 197. – №. 6. – P. 776-787.
50. McEvoy C. T., Durand M. Anti–Vascular Endothelial Growth Factor Antagonists: A Potential Primary Prevention for Bronchopulmonary Dysplasia?. – 2018.
51. Fujioka K. et al. Association of a vascular endothelial growth factor polymorphism with the development of bronchopulmonary dysplasia in Japanese premature newborns //Scientific reports. – 2014. – V. 4. – №. 1. – P. 1-5.
52. Ali A. A. et al. Polymorphisms of vascular endothelial growth factor and retinopathy of prematurity //Journal of pediatric ophthalmology and strabismus. – 2015. – V. 52. – №. 4. – P. 245-253.
53. Jakkula M. et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2000. – V. 279. – №. 3. – P. L600-L607.
54. Le Cras T. D. et al. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2002. – V. 283. – №. 3. – P. L555-L562.
55. Bhatt A. J. et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2001. – V. 164. – №. 10. – P. 1971-1980.
56. Mourani P. M. et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2015. – V. 191. – №. 1. – P. 87-95.
57. Mirza H. et al. Pulmonary hypertension in preterm infants: prevalence and association with bronchopulmonary dysplasia //The Journal of pediatrics. – 2014. – V. 165. – №. 5. – P. 909-914. e1.
58. Brooks S. E. et al. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice //Investigative ophthalmology & visual science. – 2001. – V. 42. – №. 1. – P. 222-228.
59. Fujinaga H. et al. Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2009. – V. 297. – №. 6. – P. L1160-L1169.
60. Yanamandra K. et al. Endothelial nitric oxide synthase genotypes in the etiology of retinopathy of prematurity in premature infants //Ophthalmic genetics. – 2010. – V. 31. – №. 4. – P. 173-177.
61. Lutty G. A., McLeod D. S. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine //Progress in retinal and eye research. – 2003. – V. 22. – №. 1. – P. 95-111.
62. Hasan S. U. et al. Effect of inhaled nitric oxide on survival without bronchopulmonary dysplasia in preterm infants: a randomized clinical trial //JAMA pediatrics. – 2017. – V. 171. – №. 11. – P. 1081-1089.
63. Bhat R. et al. Prospective analysis of pulmonary hypertension in extremely low birth weight infants //Pediatrics. – 2012. – V. 129. – №. 3. – P. e682-e689.
64. Berkelhamer S. K., Mestan K. K., Steinhorn R. H. Pulmonary hypertension in bronchopulmonary dysplasia //Seminars in perinatology. – WB Saunders, 2013. –V. 37. – №. 2. – P. 124-131.
65. Chetty A., Cao G. J., Nielsen H. C. Insulin-like Growth Factor-I signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts //Pediatric research. – 2006. – V. 60. – №. 4. – P. 389-394.
66. Chetty A. et al. Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) expression in human lung in RDS and BPD //Pediatric pulmonology. – 2004. – V. 37. – №. 2. – P. 128-136.
67. Hellström A. et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth //Pediatrics. – 2003. – V. 112. – №. 5. – P. 1016-1020.
68. Stahl A. et al. The mouse retina as an angiogenesis model //Investigative ophthalmology & visual science. – 2010. – V. 51. – №. 6. – P. 2813-2826.
69. Capoluongo E. et al. Epithelial lining fluid free IGF-I-to-PAPP-A ratio is associated with bronchopulmonary dysplasia in preterm infants //American Journal of Physiology-Endocrinology and Metabolism. – 2007. – V. 292. – №. 1. – P. E308-E313.
70. Harijith A. et al. A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia //American journal of respiratory cell and molecular biology. – 2011. – V. 44. – №. 5. – P. 621-630.
71. Price W. A. et al. Relation between serum insulinlike growth factor-1, insulinlike growth factor binding protein-2, and insulinlike growth factor binding protein-3 and nutritional intake in premature infants with bronchopulmonary dysplasia //Journal of pediatric gastroenterology and nutrition. – 2001. – V. 32. – №. 5. – P. 542-549.
72. Kielczewski J. L. et al. Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation //Circulation research. – 2009. – V. 105. – №. 9. – P. 897-905.
73. Lofqvist C. et al. IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth //Proceedings of the National Academy of Sciences. – 2007. – V. 104. – №. 25. – P. 10589-10594.
74. Stahl A., Hellstrom A., Smith L. E. H. Insulin-like growth factor-1 and anti-vascular endothelial growth factor in retinopathy of prematurity: has the time come //Neonatology. – 2014. – V. 106. – №. 3. – P. 254-260.
75. Sato T., Shima C., Kusaka S. Vitreous levels of angiopoietin-1 and angiopoietin-2 in eyes with retinopathy of prematurity //American journal of ophthalmology. – 2011. – V. 151. – №. 2. – P. 353-357. e1.
76. Aghai Z. H. et al. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone //Journal of Perinatology. – 2008. – V. 28. – №. 2. – P. 149-155.
77. Bhandari V. et al. Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death //Nature medicine. – 2006. – V. 12. – №. 11. – P. 1286-1293.
78. Thomas W. et al. Airway angiopoietin‐2 in ventilated very preterm infants: Association with prenatal factors and neonatal outcome //Pediatric pulmonology. – 2011. – V. 46. – №. 8. – P. 777-784.
79. De Paepe M. E. et al. Intussusceptive-like angiogenesis in human fetal lung xenografts: Link with bronchopulmonary dysplasia-associated microvascular dysangiogenesis? //Experimental lung research. – 2015. – V. 41. – №. 9. – P. 477-488.
80. Alejandre-Alcázar M. A. et al. Hyperoxia modulates TGF-β/BMP signaling in a mouse model of bronchopulmonary dysplasia //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2007. – V. 292. – №. 2. – P. L537-L549.
81. Nakanishi H. et al. TGF-β-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2007. – V. 293. – №. 1. – P. L151-L161.
82. Pereira S. et al. Transforming growth factor beta 1 binding and receptor kinetics in fetal mouse lung fibroblasts //Proceedings of the Society for Experimental Biology and Medicine. – 1998. – V. 218. – №. 1. – P. 51-61.
83. Torday J. S., Kourembanas S. Fetal rat lung fibroblasts produce a TGFβ homolog that blocks alveolar type II cell maturation //Developmental biology. – 1990. – V. 139. – №. 1. – P. 35-41.
84. Thomas W., Speer C. P. Nonventilatory strategies for prevention and treatment of bronchopulmonary dysplasia–what is the evidence? //Neonatology. – 2008. – V. 94. – №. 3. – P. 150-159.
85. Darlow B. A., Graham P. J. Vitamin A supplementation for preventing morbidity and mortality in very low birthweight infants //Cochrane Database of Systematic Reviews. – 2002. – №. 4.
86. Ambalavanan N. et al. National institute of child health and human development neonatal research network vitamin a supplementation for extremely low birth weight infants: Outcome at 18 to 22 months //Pediatrics. – 2005. – V. 115. – P. e249-e254.
87. Ozkan H. et al. Inhibition of vascular endothelial growth factor-induced retinal neovascularization by retinoic acid in experimental retinopathy of prematurity //Physiological research. – 2006. – V. 55. – №. 3.
88. Babu T. A., Sharmila V. Vitamin A supplementation in late pregnancy can decrease the incidence of bronchopulmonary dysplasia in newborns //The Journal of Maternal-Fetal & Neonatal Medicine. – 2010. – V. 23. – №. 12. – P. 1468-1469.
89. Gadhia M. M. et al. Effects of early inhaled nitric oxide therapy and vitamin A supplementation on the risk for bronchopulmonary dysplasia in premature newborns with respiratory failure //The Journal of pediatrics. – 2014. – V. 164. – №. 4. – P. 744-748.
90. De Paepe M. E., Greco D., Mao Q. Angiogenesis-related gene expression profiling in ventilated preterm human lungs //Experimental lung research. – 2010. – V. 36. – №. 7. – P. 399-410.
91. Shafiee A. et al. Inhibition of retinal angiogenesis by peptides derived from thrombospondin-1 //Investigative ophthalmology & visual science. – 2000. – V. 41. – №. 8. – P. 2378-2388.
92. Becerra S. P., Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential //Nature Reviews Cancer. – 2013. – V. 13. – №. 4. – P. 258-271.
93. Chetty A. et al. Pigment Epithelium–Derived Factor Mediates Impaired Lung Vascular Development in Neonatal Hyperoxia //American journal of respiratory cell and molecular biology. – 2015. – V. 52. – №. 3. – P. 295-303.
94. McColm J. R., Geisen P., Hartnett M. E. VEGF isoforms and their expression after a single episode of hypoxia or repeated fluctuations between hyperoxia and hypoxia: relevance to clinical ROP //Molecular vision. – 2004. – V. 10. – P. 512.
95. Hartmann J. S. et al. Expression of vascular endothelial growth factor and pigment epithelial-derived factor in a rat model of retinopathy of prematurity //Molecular vision. – 2011. – V. 17. –P. 1577.
96. Chetty A. et al. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2008. – V. 295. – №. 4. – P. L584-L592.
97. Ohno-Matsui K. et al. Reduced retinal angiogenesis in MMP-2–deficient mice //Investigative ophthalmology & visual science. – 2003. – V. 44. – №. 12. – P. 5370-5375.
98. Notari L. et al. Pigment epithelium–derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia //Investigative ophthalmology & visual science. – 2005. – V. 46. – №. 8. – P. 2736-2747.
99. Wang W. et al. A novel function for fibroblast growth factor 21: stimulation of NADPH oxidase-dependent ROS generation //Endocrine. – 2015. – V. 49. – №. 2. – P. 385-395.
100. Bai YJ, Huang LZ, Zhou AY, Zhao M, Yu WZ, Li XX. Antiangiogenesis effects of endostatin in retinal neovascularization.// J Ocul Pharmacol Ther. -2013 –V.29.- P.619–26. doi: 10.1089/jop.2012.0225
101. Hong Y. R. et al. Plasma concentrations of vascular endothelial growth factor in retinopathy of prematurity after intravitreal bevacizumab injection //Retina. – 2015. – V. 35. – №. 9. – P. 1772-1777.
102. Bhandari V. et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins //Pediatrics. – 2006. – V. 117. – №. 6. – P. 1901-1906.].
103. Lavoie P. M., Pham C., Jang K. L. Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health //Pediatrics. – 2008. – V. 122. – №. 3. – P. 479-485.
104. Leong M. Genetic approaches to bronchopulmonary dysplasia //Neoreviews. – 2019. – V. 20. – №. 5. – P. 272-279.
105. Hadchouel A. et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2011. – V. 184. – №. 10. –P. 1164-1170.].
106. Mahlman M. et al. Genes encoding vascular endothelial growth factor A (VEGF-A) and VEGF receptor 2 (VEGFR-2) and risk for bronchopulmonary dysplasia //Neonatology. – 2015. – V. 108. – №. 1. – P. 53-59.
107. Беляшова М.А. и др. Молекулярно-генетические механизмы развития БЛД // Неонатология: новости, мнения, обучение. – 2015. – V.7. – №1 – P. 43-49. [Belyashova M.A. et al. Molecular mechanisms of BPD development // Neonatology: news, opinions, training. - 2015. - V.7. - №1 - P. 43-49. In Russian].
108. Пожарищенская В. К. и др. Клинико-анамнестические и молекулярно-генетические факторы риска формирования бронхолегочной дисплазии у недоношенных детей // Педиатрия. Журнал имени Г.Н.Сперанского. – 2019. – Т. 98. – № 6. – C. 78-85. [Pozharishchenckaya V.K., Davydova I.V., Savostyanov K.V. et al. Clinical anamnestic and molecular genetic risk factors for the formation of bronchopulmonary dysplasia in premature infants.// Pediatria. Journal named after G.N. Speransky. – 2019. - V.- 98.- №. 6.- P 78–85. In Russian)]. DOI: 10.24110/0031-403Х-2019-98-6-78-85.
109. Mahlman M. et al. Genome-wide association study of bronchopulmonary dysplasia: a potential role for variants near the CRP gene //Scientific reports. – 2017. – V. 7. – №. 1. – P. 1-10.
110. Rogers L. K. et al. Attenuation of miR-17∼ 92 cluster in bronchopulmonary dysplasia //Annals of the American Thoracic Society. – 2015. – V. 12. – №. 10. – P. 1506-1513.
111. Syed M. et al. Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs //Nature communications. – 2017. – V. 8. – №. 1. – P. 1-17
112. Li J. et al. Exome sequencing of neonatal blood spots and the identification of genes implicated in bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2015. – V. 192. – №. 5. – P. 589-596
113. Hamvas A. et al. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth //BMC genetics. – 2018. – V. 19. – №. 1. – P. 1-10.