Аннотация
бронхолегочная дисплазия (БЛД) была описана как новое заболевание легких у недоношенных детей с респираторным дистресс синдромом (РДС), подвергшихся искусственной вентиляции легких (ИВЛ) с дополнительной оксигенацией в неонатальном периоде, что приводило к повреждению легких с определенными гистопатологическими особенностями в дыхательных путях. Этиологическая многофакторность заболевания в настоящее время не вызывает сомнений. Достаточно изучены патогенез, диагностика и лечение данной патологии. Проводятся многолетние исследования клинико-функциональных последствий перенесенной бронхолегочной дисплазии. Вместе с тем, предикторы формирования БЛД изучены недостаточно. Актуальным направлением исследований в настоящее время является изучение нарушения ангиогенеза малого круга кровообращения при формировании данного заболевания, в том числе на молекулярно-генетическом уровне, с целью разработки диагностических программ и терапевтических стратегий профилактики развития данной патологии у недоношенных детей
Литература
1. Northway Jr W. H., Rosan R. C., Porter D. Y. Pulmonary disease following respirator therapy of hyaline-membrane disease: bronchopulmonary dysplasia //New England Journal of Medicine. – 1967. – V. 276. – №. 7. – P. 357-368.
2. Овсянников Д. Ю., Кузьменко Л. Г. Бронхолегочная дисплазия //Пульмонология. – 2020. – №. 4. – С. 176. [Ovsyannikov D.Y. et al. Bronchopulmonary dysplasia // Pulmonology. – 2020. – №. 4. – P. 176. In Russian].
3. Abman S. H., Bancalari E., Jobe A. The evolution of bronchopulmonary dysplasia after 50 years //American journal of respiratory and critical care medicine. – 2017. – V. 195. – P. 421-424.
4. Abman S. H. et al. Interdisciplinary care of children with severe bronchopulmonary dysplasia //The Journal of pediatrics. – 2017. – V. 181. – P. 12-28.
5. Jensen E. A. et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. An evidence-based approach //American journal of respiratory and critical care medicine. – 2019. – V. 200. – №. 6. –P. 751-759.
6. Crump C. et al. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study //The Lancet Child & Adolescent Health. – 2019. – V. 3. – №. 6. – P. 408-417.
7. Higgins R. D. et al. Bronchopulmonary dysplasia: executive summary of a workshop //The Journal of pediatrics. – 2018. – V. 197. – P. 300-308.
8. Gortner L. et al. Rates of bronchopulmonary dysplasia in very preterm neonates in Europe: results from the MOSAIC cohort //Neonatology. – 2011. – V. 99. – №. 2. – P. 112-117.
9. Gortner L., Reiss I., Hilgendorff A. Bronchopulmonary dysplasia and intrauterine growth restriction //The Lancet. – 2006. – V. 368. – №. 9529. – P. 28.
10. Bose C. et al. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation //Pediatrics. – 2009. – V. 124. – №. 3. – P. e450-e458.
11. Wedgwood S. et al. Postnatal growth restriction augments oxygen-induced pulmonary hypertension in a neonatal rat model of bronchopulmonary dysplasia //Pediatric research. – 2016. – V. 80. – №. 6. – P. 894-902.
12. Underwood M. A. et al. Somatic growth and the risks of bronchopulmonary dysplasia and pulmonary hypertension: connecting epidemiology and physiology //Canadian journal of physiology and pharmacology. – 2019. – V. 97. – №. 3. – P. 197-205.
13. Mol B. W. J. et al. Pre-eclampsia //The Lancet. – 2016. –V. 387. – №. 10022. – P. 999-1011.
14. Sircar M, Thadhani R, Karumanchi SA. Pathogenesis of preeclampsia //Current Opinion in Nephrology and Hypertension. – 2015. – V. 24. – №. 2. – P. 131-8.
15. Schrey-Petersen S., Stepan H. Anti-angiogenesis and preeclampsia in 2016 //Current hypertension reports. – 2017. – V. 19. – №. 1. – P. 6.
16. Maynard S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia //The Journal of clinical investigation. – 2003. – V. 111. – №. 5. – P. 649-658.
17. Levine R. J. et al. Circulating angiogenic factors and the risk of preeclampsia //New England journal of medicine. – 2004. – V. 350. – №. 7. – P. 672-683.
18. Zeisler H. et al. Predictive value of the sFlt-1: PlGF ratio in women with suspected preeclampsia //N Engl J Med. – 2016. – V. 374. – P. 13-22.
19. Allen R. E. et al. Abnormal blood biomarkers in early pregnancy are associated with preeclampsia: a meta-analysis //European Journal of Obstetrics & Gynecology and Reproductive Biology. – 2014. – V. 182. – P. 194-201.
20. Wu F. T. H. et al. A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use //Journal of cellular and molecular medicine. – 2010. – V. 14. – №. 3. – P. 528-552.
21. Mestan K. K. et al. Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension //Placenta. – 2014. –V. 35. – №. 8. – P. 570-574.
22. Mestan K. K. et al. Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension //The Journal of pediatrics. – 2017. – V. 185. – P. 33-41.
23. Korzeniewski S. J. et al. Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth factor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study //American journal of obstetrics and gynecology. – 2016. – V. 214. – №. 5. – P. 629. e1-629. e17.
24. Lassus P. et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn //American journal of respiratory and critical care medicine. – 2001. – V. 164. – №. 10. – P. 1981-1987.
25. Hasan J. et al. Soluble vascular endothelial growth factor receptor 1 in tracheal aspirate fluid of preterm neonates at birth may be predictive of bronchopulmonary dysplasia/chronic lung disease //Pediatrics. – 2009. – V. 123. – №. 6. – P. 1541-1547.
26. Kim C. J. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance //American journal of obstetrics and gynecology. – 2015. –V. 213. – №. 4. – P. S29-S52.
27. Watterberg K. L. et al. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops //Pediatrics. – 1996. – V. 97. – №. 2. – P. 210-215.
28. Van Marter L. J. et al. Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants //The Journal of pediatrics. – 2002. – V. 140. – №. 2. – P. 171-176.
29. Hansen A. R. et al. Maternal preeclampsia predicts the development of bronchopulmonary dysplasia //The Journal of pediatrics. – 2010. – V. 156. – №. 4. – P. 532-536.
30. Yoon B. H. et al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes //American journal of obstetrics and gynecology. – 2001. – V. 185. – №. 5. – P. 1130-1136.
31. Tita A. T. N., Andrews W. W. Diagnosis and management of clinical chorioamnionitis //Clinics in perinatology. – 2010. – V. 37. – №. 2. – P. 339-354.
32. Kallapur S. G. et al. Vascular changes after intra-amniotic endotoxin in preterm lamb lungs //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2004. – V. 287. – №. 6. – P. L1178-L1185.
33. Mandell E. et al. Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2015. – V. 309. – №. 12. – P. L1438-L1446.
34. Been J. V. et al. Bronchoalveolar lavage fluid from preterm infants with chorioamnionitis inhibits alveolar epithelial repair //Respiratory Research. – 2009. – V. 10. – №. 1. – P. 1-12.
35. Mandell E. et al. Vitamin D treatment improves survival and infant lung structure after intra-amniotic endotoxin exposure in rats: potential role for the prevention of bronchopulmonary dysplasia //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2014. – V. 306. – №. 5. – P. L420-L428.
36. Morrow L. A. et al. Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants //American journal of respiratory and critical care medicine. – 2017. – V. 196. – №. 3. – P. 364-374.
37. Sekhon H. S. et al. Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys //American journal of respiratory and critical care medicine. – 2001. –V. 164. – №. 6. – P. 989-994.
38. Macaubas C. et al. Association between antenatal cytokine production and the development of atopy and asthma at age 6 years //The Lancet. – 2003. – V. 362. – №. 9391. – P. 1192-1197.
39. Coalson J. J. Pathology of bronchopulmonary dysplasia //Seminars in perinatology. – WB Saunders, 2006. – V. 30. – №. 4. – P. 179-184.
40. Steinhorn R. et al. Chronic pulmonary insufficiency of prematurity: developing optimal endpoints for drug development //J Pediatr. – 2017. – V. 191. – №. 15. – P. e1-21.
41. Alvira C. M., Morty R. E. Can we understand the pathobiology of bronchopulmonary dysplasia? //The Journal of pediatrics. – 2017. – V. 190. – P. 27-37.
42. Stark A. et al. A pathogenic relationship of bronchopulmonary dysplasia and retinopathy of prematurity? A review of angiogenic mediators in both diseases //Frontiers in pediatrics. – 2018. – V. 6. – P. 1-14.
43. Abman S. H. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease //Membrane Receptors, Channels and Transporters in Pulmonary Circulation. – 2010. – P. 323-335.
44. Sehgal A. et al. Preterm growth restriction and bronchopulmonary dysplasia: the vascular hypothesis and related physiology //The Journal of physiology. – 2019. – V. 597. – №. 4. – P. 1209-1220.
45. Askie L. M. et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials //Pediatrics. – 2011. – V. 128. – №. 4. – P. 729-739.
46. Levesque B. M. et al. Low urine vascular endothelial growth factor levels are associated with mechanical ventilation, bronchopulmonary dysplasia and retinopathy of prematurity //Neonatology. – 2013. – V. 104. – №. 1. – P. 56-64.
47. Been J. V. et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia //Pediatric research. – 2010. – V. 67. – №. 1. – P. 83-89.
48. Meller S., Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships //Experimental lung research. – 2012. – V. 38. – №. 4. – P. 192-203.
49. Wallace B. et al. Anti–sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2018. – V. 197. – №. 6. – P. 776-787.
50. McEvoy C. T., Durand M. Anti–Vascular Endothelial Growth Factor Antagonists: A Potential Primary Prevention for Bronchopulmonary Dysplasia?. – 2018.
51. Fujioka K. et al. Association of a vascular endothelial growth factor polymorphism with the development of bronchopulmonary dysplasia in Japanese premature newborns //Scientific reports. – 2014. – V. 4. – №. 1. – P. 1-5.
52. Ali A. A. et al. Polymorphisms of vascular endothelial growth factor and retinopathy of prematurity //Journal of pediatric ophthalmology and strabismus. – 2015. – V. 52. – №. 4. – P. 245-253.
53. Jakkula M. et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2000. – V. 279. – №. 3. – P. L600-L607.
54. Le Cras T. D. et al. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2002. – V. 283. – №. 3. – P. L555-L562.
55. Bhatt A. J. et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2001. – V. 164. – №. 10. – P. 1971-1980.
56. Mourani P. M. et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2015. – V. 191. – №. 1. – P. 87-95.
57. Mirza H. et al. Pulmonary hypertension in preterm infants: prevalence and association with bronchopulmonary dysplasia //The Journal of pediatrics. – 2014. – V. 165. – №. 5. – P. 909-914. e1.
58. Brooks S. E. et al. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice //Investigative ophthalmology & visual science. – 2001. – V. 42. – №. 1. – P. 222-228.
59. Fujinaga H. et al. Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2009. – V. 297. – №. 6. – P. L1160-L1169.
60. Yanamandra K. et al. Endothelial nitric oxide synthase genotypes in the etiology of retinopathy of prematurity in premature infants //Ophthalmic genetics. – 2010. – V. 31. – №. 4. – P. 173-177.
61. Lutty G. A., McLeod D. S. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine //Progress in retinal and eye research. – 2003. – V. 22. – №. 1. – P. 95-111.
62. Hasan S. U. et al. Effect of inhaled nitric oxide on survival without bronchopulmonary dysplasia in preterm infants: a randomized clinical trial //JAMA pediatrics. – 2017. – V. 171. – №. 11. – P. 1081-1089.
63. Bhat R. et al. Prospective analysis of pulmonary hypertension in extremely low birth weight infants //Pediatrics. – 2012. – V. 129. – №. 3. – P. e682-e689.
64. Berkelhamer S. K., Mestan K. K., Steinhorn R. H. Pulmonary hypertension in bronchopulmonary dysplasia //Seminars in perinatology. – WB Saunders, 2013. –V. 37. – №. 2. – P. 124-131.
65. Chetty A., Cao G. J., Nielsen H. C. Insulin-like Growth Factor-I signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts //Pediatric research. – 2006. – V. 60. – №. 4. – P. 389-394.
66. Chetty A. et al. Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) expression in human lung in RDS and BPD //Pediatric pulmonology. – 2004. – V. 37. – №. 2. – P. 128-136.
67. Hellström A. et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth //Pediatrics. – 2003. – V. 112. – №. 5. – P. 1016-1020.
68. Stahl A. et al. The mouse retina as an angiogenesis model //Investigative ophthalmology & visual science. – 2010. – V. 51. – №. 6. – P. 2813-2826.
69. Capoluongo E. et al. Epithelial lining fluid free IGF-I-to-PAPP-A ratio is associated with bronchopulmonary dysplasia in preterm infants //American Journal of Physiology-Endocrinology and Metabolism. – 2007. – V. 292. – №. 1. – P. E308-E313.
70. Harijith A. et al. A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia //American journal of respiratory cell and molecular biology. – 2011. – V. 44. – №. 5. – P. 621-630.
71. Price W. A. et al. Relation between serum insulinlike growth factor-1, insulinlike growth factor binding protein-2, and insulinlike growth factor binding protein-3 and nutritional intake in premature infants with bronchopulmonary dysplasia //Journal of pediatric gastroenterology and nutrition. – 2001. – V. 32. – №. 5. – P. 542-549.
72. Kielczewski J. L. et al. Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation //Circulation research. – 2009. – V. 105. – №. 9. – P. 897-905.
73. Lofqvist C. et al. IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth //Proceedings of the National Academy of Sciences. – 2007. – V. 104. – №. 25. – P. 10589-10594.
74. Stahl A., Hellstrom A., Smith L. E. H. Insulin-like growth factor-1 and anti-vascular endothelial growth factor in retinopathy of prematurity: has the time come //Neonatology. – 2014. – V. 106. – №. 3. – P. 254-260.
75. Sato T., Shima C., Kusaka S. Vitreous levels of angiopoietin-1 and angiopoietin-2 in eyes with retinopathy of prematurity //American journal of ophthalmology. – 2011. – V. 151. – №. 2. – P. 353-357. e1.
76. Aghai Z. H. et al. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone //Journal of Perinatology. – 2008. – V. 28. – №. 2. – P. 149-155.
77. Bhandari V. et al. Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death //Nature medicine. – 2006. – V. 12. – №. 11. – P. 1286-1293.
78. Thomas W. et al. Airway angiopoietin‐2 in ventilated very preterm infants: Association with prenatal factors and neonatal outcome //Pediatric pulmonology. – 2011. – V. 46. – №. 8. – P. 777-784.
79. De Paepe M. E. et al. Intussusceptive-like angiogenesis in human fetal lung xenografts: Link with bronchopulmonary dysplasia-associated microvascular dysangiogenesis? //Experimental lung research. – 2015. – V. 41. – №. 9. – P. 477-488.
80. Alejandre-Alcázar M. A. et al. Hyperoxia modulates TGF-β/BMP signaling in a mouse model of bronchopulmonary dysplasia //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2007. – V. 292. – №. 2. – P. L537-L549.
81. Nakanishi H. et al. TGF-β-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2007. – V. 293. – №. 1. – P. L151-L161.
82. Pereira S. et al. Transforming growth factor beta 1 binding and receptor kinetics in fetal mouse lung fibroblasts //Proceedings of the Society for Experimental Biology and Medicine. – 1998. – V. 218. – №. 1. – P. 51-61.
83. Torday J. S., Kourembanas S. Fetal rat lung fibroblasts produce a TGFβ homolog that blocks alveolar type II cell maturation //Developmental biology. – 1990. – V. 139. – №. 1. – P. 35-41.
84. Thomas W., Speer C. P. Nonventilatory strategies for prevention and treatment of bronchopulmonary dysplasia–what is the evidence? //Neonatology. – 2008. – V. 94. – №. 3. – P. 150-159.
85. Darlow B. A., Graham P. J. Vitamin A supplementation for preventing morbidity and mortality in very low birthweight infants //Cochrane Database of Systematic Reviews. – 2002. – №. 4.
86. Ambalavanan N. et al. National institute of child health and human development neonatal research network vitamin a supplementation for extremely low birth weight infants: Outcome at 18 to 22 months //Pediatrics. – 2005. – V. 115. – P. e249-e254.
87. Ozkan H. et al. Inhibition of vascular endothelial growth factor-induced retinal neovascularization by retinoic acid in experimental retinopathy of prematurity //Physiological research. – 2006. – V. 55. – №. 3.
88. Babu T. A., Sharmila V. Vitamin A supplementation in late pregnancy can decrease the incidence of bronchopulmonary dysplasia in newborns //The Journal of Maternal-Fetal & Neonatal Medicine. – 2010. – V. 23. – №. 12. – P. 1468-1469.
89. Gadhia M. M. et al. Effects of early inhaled nitric oxide therapy and vitamin A supplementation on the risk for bronchopulmonary dysplasia in premature newborns with respiratory failure //The Journal of pediatrics. – 2014. – V. 164. – №. 4. – P. 744-748.
90. De Paepe M. E., Greco D., Mao Q. Angiogenesis-related gene expression profiling in ventilated preterm human lungs //Experimental lung research. – 2010. – V. 36. – №. 7. – P. 399-410.
91. Shafiee A. et al. Inhibition of retinal angiogenesis by peptides derived from thrombospondin-1 //Investigative ophthalmology & visual science. – 2000. – V. 41. – №. 8. – P. 2378-2388.
92. Becerra S. P., Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential //Nature Reviews Cancer. – 2013. – V. 13. – №. 4. – P. 258-271.
93. Chetty A. et al. Pigment Epithelium–Derived Factor Mediates Impaired Lung Vascular Development in Neonatal Hyperoxia //American journal of respiratory cell and molecular biology. – 2015. – V. 52. – №. 3. – P. 295-303.
94. McColm J. R., Geisen P., Hartnett M. E. VEGF isoforms and their expression after a single episode of hypoxia or repeated fluctuations between hyperoxia and hypoxia: relevance to clinical ROP //Molecular vision. – 2004. – V. 10. – P. 512.
95. Hartmann J. S. et al. Expression of vascular endothelial growth factor and pigment epithelial-derived factor in a rat model of retinopathy of prematurity //Molecular vision. – 2011. – V. 17. –P. 1577.
96. Chetty A. et al. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2008. – V. 295. – №. 4. – P. L584-L592.
97. Ohno-Matsui K. et al. Reduced retinal angiogenesis in MMP-2–deficient mice //Investigative ophthalmology & visual science. – 2003. – V. 44. – №. 12. – P. 5370-5375.
98. Notari L. et al. Pigment epithelium–derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia //Investigative ophthalmology & visual science. – 2005. – V. 46. – №. 8. – P. 2736-2747.
99. Wang W. et al. A novel function for fibroblast growth factor 21: stimulation of NADPH oxidase-dependent ROS generation //Endocrine. – 2015. – V. 49. – №. 2. – P. 385-395.
100. Bai YJ, Huang LZ, Zhou AY, Zhao M, Yu WZ, Li XX. Antiangiogenesis effects of endostatin in retinal neovascularization.// J Ocul Pharmacol Ther. -2013 –V.29.- P.619–26. doi: 10.1089/jop.2012.0225
101. Hong Y. R. et al. Plasma concentrations of vascular endothelial growth factor in retinopathy of prematurity after intravitreal bevacizumab injection //Retina. – 2015. – V. 35. – №. 9. – P. 1772-1777.
102. Bhandari V. et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins //Pediatrics. – 2006. – V. 117. – №. 6. – P. 1901-1906.].
103. Lavoie P. M., Pham C., Jang K. L. Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health //Pediatrics. – 2008. – V. 122. – №. 3. – P. 479-485.
104. Leong M. Genetic approaches to bronchopulmonary dysplasia //Neoreviews. – 2019. – V. 20. – №. 5. – P. 272-279.
105. Hadchouel A. et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2011. – V. 184. – №. 10. –P. 1164-1170.].
106. Mahlman M. et al. Genes encoding vascular endothelial growth factor A (VEGF-A) and VEGF receptor 2 (VEGFR-2) and risk for bronchopulmonary dysplasia //Neonatology. – 2015. – V. 108. – №. 1. – P. 53-59.
107. Беляшова М.А. и др. Молекулярно-генетические механизмы развития БЛД // Неонатология: новости, мнения, обучение. – 2015. – V.7. – №1 – P. 43-49. [Belyashova M.A. et al. Molecular mechanisms of BPD development // Neonatology: news, opinions, training. - 2015. - V.7. - №1 - P. 43-49. In Russian].
108. Пожарищенская В. К. и др. Клинико-анамнестические и молекулярно-генетические факторы риска формирования бронхолегочной дисплазии у недоношенных детей // Педиатрия. Журнал имени Г.Н.Сперанского. – 2019. – Т. 98. – № 6. – C. 78-85. [Pozharishchenckaya V.K., Davydova I.V., Savostyanov K.V. et al. Clinical anamnestic and molecular genetic risk factors for the formation of bronchopulmonary dysplasia in premature infants.// Pediatria. Journal named after G.N. Speransky. – 2019. - V.- 98.- №. 6.- P 78–85. In Russian)]. DOI: 10.24110/0031-403Х-2019-98-6-78-85.
109. Mahlman M. et al. Genome-wide association study of bronchopulmonary dysplasia: a potential role for variants near the CRP gene //Scientific reports. – 2017. – V. 7. – №. 1. – P. 1-10.
110. Rogers L. K. et al. Attenuation of miR-17∼ 92 cluster in bronchopulmonary dysplasia //Annals of the American Thoracic Society. – 2015. – V. 12. – №. 10. – P. 1506-1513.
111. Syed M. et al. Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs //Nature communications. – 2017. – V. 8. – №. 1. – P. 1-17
112. Li J. et al. Exome sequencing of neonatal blood spots and the identification of genes implicated in bronchopulmonary dysplasia //American journal of respiratory and critical care medicine. – 2015. – V. 192. – №. 5. – P. 589-596
113. Hamvas A. et al. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth //BMC genetics. – 2018. – V. 19. – №. 1. – P. 1-10.