Роль сахарного диабета в развитии коронарного атеросклероза у лиц трудоспособного возраста: клинико-генетическое исследование. Обзор литературы
Ж. В. Зюзина
Государственное бюджетное учреждение здравоохранения города Москвы «Городская поликлиника № 62» Департа- мента здравоохранения Москвы
PDF

Ключевые слова

сахарный диабет 2 типа
коронарный атеросклероз
ишемическая болезнь сердца
однонуклеотидные полиморфизмы
генетические маркеры риска

Как цитировать

Зюзина Ж. В. Роль сахарного диабета в развитии коронарного атеросклероза у лиц трудоспособного возраста: клинико-генетическое исследование. Обзор литературы // Кремлевская медицина. Клинический вестник. 2019. Т. № 1. С. 75-86.
PDF

Аннотация

В данном обзоре приведен анализ современной научной литературы по исследованию генетических маркеров риска патологических состояний и заболеваний, имеющих многофакторную природу и представляющих глобальную социальную и медицинскую значимость ввиду высокого риска инвалидизации и смертности людей, в особенности трудоспособного возраста. Представлены различные направления в изучении генома человека при сахарном диабете, коронарном атеросклерозе, ишемической болезни сердца и ее осложнениях, имеющиеся генетические корреляции и связи полиморфизмов генов, отвечающих за многочисленные звенья патогенеза рассматриваемых заболеваний. Кроме того, показан противоречивый характер результатов научных исследований в зависимости от изучаемых популяций, выборки и стран мира. Все выше перечисленное представляет большой интерес для дальнейших научных работ в данном направлении, поиска новых биохимических и генетических маркеров для оценки индивидуального генетического риска, осуществления первичных профилактических мероприятий и разработки оптимальных терапевтических схем в последующем.  
PDF

Литература

1. Вишневский А.Г., Андреев Е.М., Тимонин С.А. Смертность от болезней системы кровообращения и продолжительность жизни в России. Демографическое обозрение. 2016;3:6-34.
2. Кучеренко О.Д. Атеросклероз как воспалительное заболевание. Врачебная практика. 1999:81-7.
3. Ôunpuu S, Negassa A, Yusuf S. INTER-HEART: A global study of risk factors for acute myocardial infarction. American Heart Journal. 2001;141:711-21. doi: 10.1067/mhj.2001.114974.
4. Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, Bansal N. et al. Association of Cardiometabolic Multimorbidity With Mortality. JAMA. 2015;314:52-60. doi: 10.1001/jama.2015.7008.
5. Constantino MI, Molyneaux L, Limacher-Gisler F, Al-Saeed A, Luo C, Wu T. et al. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care. 2013;36:3863-9. doi: 10.2337/dc12-2455.
6. Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2‑го типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104-12. doi: 10.14341/DM2004116-17.
7. Петунина Н.А., Трухина Л.В., Синицына Е.И. Индивидуальный подход к лечению больных сахарным диабетом 2-го типа. Русский медицинский журнал. 2013;21(28):1412-7.
8. Аметов А.С. Лысенко М.А. Сахарный диабет второго типа и сердечно-сосудистые заболевания: столкновение двух глобальных неинфекционных эпидемий. Русский медицинский журнал. 2011;19(13):802-4.
9. Куликова А.Н. Роль воспаления в атерогенезе при сахарном диабете (обзор литературы). Цитокины и воспаление. 2007;6(3):14-19.
10. Betteridge DJ. Epidemiology of the Cardiac Complications of Type 2 Diabetes Mellitus. Medicographia. 2001;23:95-9.
11. Mori H, Ikegami H, Kawaguchi Y, Seino S, Yokoi N, Takeda J. et al. The Pro12->Ala Substitution in PPAR- Is Associated With Resistance to Development of Diabetes in the General Population: Possible Involvement in Impairment of Insulin Secretion in Individuals With Type 2 Diabetes. Diabetes. 2001;50(4):891-4. doi: 10.2337/diabetes.50.4.891.
12. Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D. et al. Impact of Diabetes on Long-Term Prognosis in Patients With Unstable Angina and Non–Q-Wave Myocardial Infarction. Circulation. 2000;102(9):1014–9. doi: 10.1161/01.cir.102.9.1014.
13. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J. et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biology. 2018;20:247-60. doi: 10.1016/j.redox.2018.09.025.
14. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiological Reviews. 2013;93(1):137-88. doi: 10.1152/physrev.00045.2011.
15. Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circulation Research. 2017;120(4):713-35. doi: 10.1161/circresaha.116.309326.
16. Арабидзе Г.Г. Клиническая иммунология атеросклероза – от теории к практике. Атеросклероз и дислипидемии. 2013;1(10):4-19.
17. Кошкарбаева А.К. Афанасьева С.Н. Инсулинорезистентность как ведущий фактор риска ишемической болезни сердца при сахарном диабете 2 типа. Архивъ внутренней медицины. 2013;5(13):35-9.
18. Turner RC, Millns H, Neil HAW, Stratton IM, Manley SE, Matthews DR. et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS: 23). BMJ. 1998;316(7134):823-8. doi: 10.1136/bmj.316.7134.823.
19. Soinio M, Marniemi J, Laakso M, Lehto S, Ronnemaa T. High-Sensitivity C-Reactive Protein and Coronary Heart Disease Mortality in Patients With Type 2 Diabetes: A 7-year follow-up study. Diabetes Care. 2006;29(2):329-33. doi: 10.2337/diacare.29.02.06.dc05-1700.
20. Дедов И.И. Балаболкин М.И. Инсулиновая резистентность в патогенезе сахарного диабета 2 типа и медикаментозная возможность её преодоления. Врач. 2006;11:3-9.
21. Ковалева О.Н., Амбросова Т.Н., Ащеулова Т.В., Гетман Е.А. Адипокины: биологические, патофизиологические и метаболические эффекты. Внутренняя медицина. 2009;3:18-26.
22. Burnett MS, Devaney JM, Adenika RJ, Lindsay R, Howard BV. Cross-sectional associations of resistin, coronary heart disease, and insulin resistance. The Journal of Clinical Endocrinology & Metabolism. 2006;91(1):64-8. doi: 10.1210/jc.2005-1653.
23. Майоров А.Ю. Инсулинорезистентность в патогенезе сахарного диабета второго типа. Сахарный диабет. 2011;1:35-43.
24. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30(3):753-9. doi: 10.2337/dc07-9920.
25. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409(6821):729-33. doi: 10.1038/35055575.
26. Natali A, Vichi S, Landi P, Severi S, L'Abbate A, Ferrannini E. Coronary atherosclerosis in Type II diabetes: angiographic findings and clinical outcome. Diabetologia. 2000;43(5):632-41. doi: 10.1007/s001250051352.
27. Cariou B, Bonnevie L, Mayaudon H, Dupuy O, Ceccaldi B, Bauduceau B. Angiographic characteristics of coronary artery disease in diabetic patients compared with matched non-diabetic subjects. Diabetes, Nutrition & Metabolism. 2000;13:134-41.
28. Werner G. Impaired acute collateral recruitment as a possible mechanism for increased cardiac adverse events in patients with diabetes mellitus. European Heart Journal. 2003;24(12):1134-42. doi: 10.1016/s0195-668x(03)00187-8.
29. Biondi-Zoccai GG, Abbate A, Liuzzo G, Biasucci LM. Atherothrombosis, inflammation, and diabetes. Journal of the American College of Cardiology. 2003;41(7):1071-7. doi: 10.1016/s0735-1097(03)00088-3.
30. Orchard TJ, Costacou T, Kretowski A, Nesto RW. Type 1 diabetes and coronary artery disease. Diabetes Care. 2006;29(11):2528-38. doi: 10.2337/dc06-1161.
31. Shinozaki K, Suzuki M, Ikebuchi M, Hara Y, Harano Y. Demonstration, of Insulin Resistance in Coronary Artery Disease Documented With Angiography. Diabetes Care. 1996;19(1):1-7. doi: 10.2337/diacare.19.1.1.
32. Reiss AB, Patel CA, Rahman MM, Chan ESL, Hasneen K, Montesinos MC. et al. Interferon-gamma impedes reverse cholesterol transport and promotes foam cell transformation in THP-1 human monocytes/macrophages. Medical Science Monitor. 2004;10(11):BR420-5.
33. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics. 2012;44(9):981-90. doi: 10.1038/ng.2383.
34. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics. 2013;45(1):25-33. doi: 10.1038/ng.2480.
35. Jansen H, Loley C, Lieb W, Pencina MJ, Nelson CP, Kathiresan S. et al. Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. Atherosclerosis. 2015;241(2):419-26. doi: 10.1016/j.atherosclerosis.2015.05.033.
36. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P. et al. An atlas of genetic correlations across human diseases and traits. Nature Genetics. 2015;47(11):1236-41. doi: 10.1038/ng.3406.
37. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics. 2007;39(6):770-5. doi: 10.1038/ng2043.
38. Scott RA, Freitag DF, Li L, Chu AY, Surendran P, Young R. et al. A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Science Translational Medicine. 2016;8(341):341ra76. doi: 10.1126/scitranslmed.aad3744.
39. Cheon EJ, Cha DH, Cho SK, Noh H, Park S, Kang S. et al. Novel association between CDKAL1 and cholesterol efflux capacity: Replication after GWAS-based discovery. Atherosclerosis. 2018;273:21-7. doi: 10.1016/j.atherosclerosis.2018.04.011.
40. Dauriz M, Meigs JB. Current Insights into the Joint Genetic Basis of Type 2 Diabetes and Coronary Heart Disease. Current Cardiovascular Risk Reports. 2014;8(1):368. doi: 10.1007/s12170-013-0368-z.
41. Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E. et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis. 2012;220(2):449-55. doi: 10.1016/j.atherosclerosis.2011.11.017.
42. Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B. Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. PLoS Genetics. 2010;6(4):e1000899. doi: 10.1371/journal.pgen.1000899.
43. Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends in Endocrinology & Metabolism. 2015;26(4):176-84. doi: 10.1016/j.tem.2015.01.008.
44. Zhao W, Rasheed A, Tikkanen E, Lee J, Butterworth AS, Howson JMM, et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nature Genetics. 2017;49(10):1450-7. doi: 10.1038/ng.3943.
45. Ross S, Gerstein H, Paré G. The Genetic Link Between Diabetes and Atherosclerosis. Canadian Journal of Cardiology. 2018;34(5):565-74. doi: 10.1016/j.cjca.2018.01.016.
46. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E. et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. The Lancet. 2010;375(9733):2215-22. doi: 10.1016/s0140-6736(10)60484-9.
47. Jousilahti P, Vartiainen E, Salomaa V, Harald K, Seshasai SR, Kaptoge S. et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. New England Journal of Medicine. 2011;364(9):829-41. doi: 10.1056/nejmoa1008862.
48. Мешков А.Н., Малышев П.П., Кухарчук В.В. Семейная гиперхолестеринемия в России: генетическая и фенотипическая характеристика. Терапевтический архив. 2009;81(9):23-8.
49. Hao G, Li W, Guo R, Yang J, Wang Y, Tian Y. et al. Serum total adiponectin level and the risk of cardiovascular disease in general population: a meta-analysis of 17 prospective studies. Atherosclerosis. 2013;228(1):29-35. doi: 10.1016/j.atherosclerosis.2013.02.018.
50. Statnick MA, Beavers LS, Conner LJ, Corominola H, Johnson D, Hammond CD. et al. Decreased Expression Of apM1 in Omental and Subcutaneous Adipose Tissue of Humans With Type 2 Diabetes. International Journal of Experimental Diabetes Research. 2000;1(2):81-8. doi: 10.1155/EDR.2000.81.
51. Ray KK, Seshasai SRK, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D. et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: A meta-analysis of randomised controlled trials. The Lancet. 2009;373(9677):1765-72. doi: 10.1016/s0140-6736(09)60697-8.
52. Bacci S, Menzaghi C, Ercolino T, Ma X, Rauseo A, Salvemini L. et al. The +276 G/T Single Nucleotide Polymorphism of the Adiponectin Gene Is Associated With Coronary Artery Disease in Type 2 Diabetic Patients. Diabetes Care. 2004;27(8):2015-20. doi: 10.2337/diacare.27.8.2015.
53. Filippi E, Sentinelli F, Romeo S, Arca M, Berni A, Tiberti C. et al. The adiponectin gene SNP+276G>T associates with early-onset coronary artery disease and with lower levels of adiponectin in younger coronary artery disease patients (age ≤50 years). Journal of Molecular Medicine. 2005;83(9):711-9. doi: 10.1007/s00109-005-0667-z.
54. Foucan L, Maimaitiming S, Larifla L, Hedreville S, Deloumeaux J, Joannes M. et al. Adiponectin gene variants, adiponectin isoforms and cardiometabolic risk in type 2 diabetic patients. Journal of Diabetes Investigation. 2013;5(2):192-8. doi: 10.1111/jdi.12133.
55. Mofarrah M, Ziaee S, Pilehvar-Soltanahmadi Y, Zarghami F, Boroumand M, Zarghami N. Association of KALRN, ADIPOQ, and FTO gene polymorphism in type 2 diabetic patients with coronary artery disease: possible predisposing markers. Coronary Artery Disease. 2016;27(6):490-6. doi: 10.1097/mca.0000000000000386.
56. Qi L, Doria A, Manson JE, Meigs JB, Hunter D, Mantzoros CS, Hu FB. Adiponectin Genetic Variability, Plasma Adiponectin, and Cardiovascular Risk in Patients With Type 2 Diabetes. Diabetes. 2006;55(5):1512-6. doi: 10.2337/db05-1520.
57. Mohammadzadeh G, Ghaffari M, Heibar H, Bazyar M. Association of two Common Single Nucleotide Polymorphisms (+45T/G and +276G/T) of ADIPOQ Gene with Coronary Artery Disease in Type 2 Diabetic Patients. Iranian Biomedical Journal. 2016;20(3):152-60.
58. Zhao N, Li N, Zhang S, Ma Q, Ma C, Yang X. et al. Associations between two common single nucleotide polymorphisms (rs2241766 and rs1501299) of ADIPOQ gene and coronary artery disease in type 2 diabetic patients: a systematic review and meta-analysis. Oncotarget. 2017;8(31):51994-52005. doi: 10.18632/oncotarget.18317.
59. Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S. et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526(7571):82-90. doi: 10.1038/nature14962.
60. Muiya N, Al-Najai M, Tahir AI, Elhawari S, Gueco D, Andres E. et al. The 3'-UTR of the adiponectin Q gene harbours susceptibility loci for atherosclerosis and its metabolic risk traits. BMC Medical Genetics. 2013;14(1):127. doi: 10.1186/1471-2350-14-127.
61. Mtiraoui N, Ezzidi I, Turki A, Chaieb A, Mahjoub T, Almawi WY. Single-nucleotide polymorphisms and haplotypes in the adiponectin gene contribute to the genetic risk for type 2 diabetes in Tunisian Arabs. Diabetes Research and Clinical Practice. 2012;97(2):290-7. doi: 10.1016/j.diabres.2012.02.015.
62. Ramya K, Ayyappa KA, Ghosh S, Mohan V, Radha V. Genetic association of ADIPOQ gene variants with type 2 diabetes, obesity and serum adiponectin levels in south Indian population. Gene. 2013;532(2):253-62. doi: 10.1016/j.gene.2013.09.012.
63. Mackevics V, Heid IM, Wagner SA, Cip P, Doppelmayr H, Lejnieks A. et al. The adiponectin gene is associated with adiponectin levels but not with characteristics of the insulin resistance syndrome in healthy Caucasians. European Journal of Human Genetics. 2006;14(3):349-56. doi: 10.1038/sj.ejhg.5201552.
64. Сметнев С.А., Мешков А.Н., Климушина М.В., Гаврилова Н.Е., Ершова А.И., Киселева А.В. и др. Ассоциация вариантов нуклеотидной последовательности гена adipoqс плазменным уровнем адипонектина, степенью выраженности коронарного атеросклероза и частотой сердечно-сосудистых заболеваний. Российский кардиологический журнал. 2018;23(8):25-31. doi: 10.15829/1560-4071-2018-8-25-31
65. Ходырев Д.С., Никитин А.Г., Бровкин А.Н., Лаврикова Е.Ю., Лебедева Н.О., Викулова О.К. и др. Анализ ассоциации полиморфных маркеров генов ADIPOQ, ADIPOR1 и ADIPOR2 с сахарным диабетом 2 типа. Сахарный диабет. 2015;18(2):5-11. doi: 10.14341/dm201525-11.
66. Juul K, Tybjaerg-Hansen A, Marklund S, Heegaard NHH, Steffensen R, Sillesen H. et al. Genetically reduced antioxidative protection and increased ischemic heart disease risk: The Copenhagen City Heart Study. Circulation. 2004;109(1):59-65. doi: 10.1161/01.cir.0000105720.28086.6c.
67. Колесникова Л.И., Баирова Т.А., Первушина О.А. Гены ферментов антиоксидантной системы. Вестник РАМН. 2013;68(12):83-8. doi: 10.15690/vramn.v68i12.865.
68. Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O'Rourke B, Paolocci N. et al. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. The Journal of General Physiology. 2012;139(6):479-91. doi: 10.1085/jgp.201210772.
69. Kariž S, Mankoč S, Petrovič D. Association of thioredoxin reductase 2 (TXNRD2) gene polymorphisms with myocardial infarction in Slovene patients with type 2 diabetes mellitus. Diabetes Research and Clinical Practice. 2015;108(2):323-8. doi: 10.1016/j.diabres.2015.01.038.
70. Федорова А.П., Серебрякова О.В., Серкин Д.М., Страмбовская Н.Н., Пушкарев Б.С. Ассоциации генетических полиморфизмов GLN192ARG PON1 и C3238G APOC3 у женщин с ишемической болезнью сердца на фоне сахарного диабета 2 типа и гипотиреоза. Архивъ внутренней медицины. 2017;7(4):271-7. doi: 10.20514/2226-6704-2017-7-4-271-277.
71. Luo J, Ren H, Banh HL, Liu M, Xu P, Fang P. et al. The Associations between Apolipoprotein E Gene Epsilon2/Epsilon3/Epsilon4 Polymorphisms and the Risk of Coronary Artery Disease in Patients with Type 2 Diabetes Mellitus. Frontiers in Physiology. 2017;8:1031. doi: 10.3389/fphys.2017.01031.
72. Chaaba R, Attia N, Hammami S, Smaoui M, Ben Hamda K, Mahjoub S. et al. Association between apolipoprotein E polymorphism, lipids, and coronary artery disease in Tunisian type 2 diabetes. Journal of Clinical Lipidology. 2008;2(5):360-4. doi: 10.1016/j.jacl.2008.08.441.
73. Halim EF, Abd El, Reda AA, Hendi AAK, Zaki SA, Essa ES. et al. Apolipoprotein E gene variants as a risk factor for coronary artery disease in type 2 diabetic Egyptian patients. The Egyptian journal of Immunology. 2012;19(1):1-10.
74. Izar MC, Helfenstein T, Ihara SS, Relvas WG, Santos AO, Fischer SC. et al. Association of lipoprotein lipase D9N polymorphism with myocardial infarction in type 2 diabetes: the genetics, outcomes, and lipids in type 2 diabetes (GOLD) study. Atherosclerosis. 2009;204(1):165-70. doi: 10.1016/j.atherosclerosis.2008.08.006.
75. Jayashankar CA, Andrews HP, Vijayasarathi, Pinnelli VB, Shashidharan B, Nithin Kumar HN. et al. Serum uric acid and low-density lipoprotein cholesterol levels are independent predictors of coronary artery disease in Asian Indian patients with type 2 diabetes mellitus. Journal of Natural Science, Biology and Medicine. 2016;7(2):161-5. doi: 10.4103/0976-9668.184703.
76. Larifla L, Armand C, Bangou J, Blanchet-Deverly A, Numeric P, Fonteau C. et al. Association of APOE gene polymorphism with lipid profile and coronary artery disease in Afro-Caribbeans. PLoS ONE. 2017;12(7):e0181620. doi: 10.1371/journal.pone.0181620.
77. Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A. et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298(11):1300-11. doi: 10.1001/jama.298.11.1300.
78. Song Y, Stampfer MJ, Liu S. Meta-Analysis: Apolipoprotein E Genotypes and Risk for Coronary Heart Disease. Annals of Internal Medicine. 2004;141(2):137-47. doi: 10.7326/0003-4819-141-2-200407200-00013.
79. Wang Y, Sun L, Zhang L, Xu H, Dong Z, Wang L. et al. Association between Apolipoprotein E polymorphism and myocardial infarction risk: A systematic review and meta-analysis. FEBS Open Bio. 2015;5(1):852-8. doi: 10.1016/j.fob.2015.10.006.
80. Yin Y, Sun Q, Zhang B, Hu A, Liu H, Wang Q. et al. Association between apolipoprotein E gene polymorphism and the risk of coronary artery disease in Chinese population: evidence from a meta-analysis of 40 studies. PLoS ONE. 2013;8(6):e66924. doi: 10.1371/journal.pone.0066924.
81. Jafar-Mohammadi B, Groves CJ, Owen KR, Frayling TM, Hattersley AT, McCarthy MI. et al. Low frequency variants in the exons only encoding isoform A of HNF1A do not contribute to susceptibility to type 2 diabetes. PLoS ONE. 2009;4(8):e6615. doi: 10.1371/journal.pone.0006615.
82. Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ. et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care. 2012;35(6):1206-12. doi: 10.2337/dc11-1243.
83. Reiner AP, Gross MD, Carlson CS, Bielinski SJ, Lange LA, Fornage M. et al. Common coding variants of the HNF1A gene are associated with multiple cardiovascular risk phenotypes in community-based samples of younger and older European-American adults: the Coronary Artery Risk Development in Young Adults Study and The Cardiovascular Health Study. Circulation: Cardiovascular Genetics. 2009;2(3):244-54. doi: 10.1161/circgenetics.108.839506.
84. Reiner AP, Barber MJ, Guan Y, Ridker PM, Lange LA, Chasman DI. et al. Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are associated with C-reactive protein. The American Journal of Human Genetics. 2008;82(5):1193-201. doi: 10.1016/j.ajhg.2008.03.017.
85. Wakil SM, Muiya NP, Tahir AI, Al-Najai M, Baz B, Andres E. et al. A new susceptibility locus for myocardial infarction, hypertension, type 2 diabetes mellitus, and dyslipidemia on chromosome 12q24. Disease Markers. 2014;2014:291419. doi: 10.1155/2014/291419.
86. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332(6032):970-4. doi: 10.1126/science.1198719.
87. Singh V, Yeoh BS, Vijay-Kumar M. Gut microbiome as a novel cardiovascular therapeutic target. Current Opinion in Pharmacology. 2016;27:8-12. doi: 10.1016/j.coph.2016.01.002.
88. Chistiakov DA, Bobryshev YV, Kozarov E, Sobenin IA, Orekhov AN. Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Frontiers in Microbiology. 2015;6:671. doi: 10.3389/fmicb.2015.00671.
89. Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metabolism. 2012;16(5):559-64. doi: 10.1016/j.cmet.2012.10.007.
90. Wu L, Dai X, Zhan J, Zhang Y, Zhang H, Zhang H. et al. Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. APMIS. 2015;123(7):580-5. doi: 10.1111/apm.12389.
91. Sayed ASM, Xia K, Salma U, Yang T, Peng J. Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart, Lung and Circulation. 2014;23(6):503-10. doi: 10.1016/j.hlc.2014.01.001.
92. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769-73. doi: 10.1038/nature03315.
93. Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB. et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. Journal of Clinical Investigation. 2015;125(12):4334-48. doi: 10.1172/jci81676.
94. Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X. et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215(2):286-93. doi: 10.1016/j.atherosclerosis.2010.12.024.
95. Raitoharju E, Lyytikäinen L, Levula M, Oksala N, Mennander A, Tarkka M. et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219(1):211-7. doi: 10.1016/j.atherosclerosis.2011.07.020.
96. Chen W, Yin K, Zhao G, Fu Y, Tang C. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis. 2012;222(2):314-23. doi: 10.1016/j.atherosclerosis.2012.01.020.
97. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. Nutrition Journal. 2014;13(1):17. doi: 10.1186/1475-2891-13-17.
98. Robitaille J, Brouillette C, Houde A, Lemieux S, Pérusse L, Tchernof A. et al. Association between the PPARalpha-L162V polymorphism and components of the metabolic syndrome. Journal of Human Genetics. 2004;49(9):482-9. doi: 10.1007/s10038-004-0177-9.
99. Skoczynska A, Dobosz T, Poreba R, Turczyn B, Derkacz A, Zoledziewska M. et al. The dependence of serum interleukin-6 level on PPAR-alpha polymorphism in men with coronary atherosclerosis. European Journal of Internal Medicine. 2005;16(7):501-6. doi: 10.1016/j.ejim.2005.04.012.
100. Flavell DM, Jamshidi Y, Hawe E, Pineda Torra I, Taskinen M, Frick MH. et al. Peroxisome Proliferator-Activated Receptor α Gene Variants Influence Progression of Coronary Atherosclerosis and Risk of Coronary Artery Disease. Circulation. 2002;105(12):1440-5. doi: 10.1161/01.cir.0000012145.80593.25.
101. Sergeeva EG, Bercovich OA, Carpenko MA, Ionova ZI, Kostareva AA. L162v Polymorphism of Peroxisome Proliferator-activated Receptor-alpha Gene and Markers of Immune Inflammation in Patients with Coronary Artery Disease. Angiology: Open Access. 2016;4:3. doi: 10.4172/2329-9495.1000177.
102. Wu Z, Lou Y, Jin W, Liu Y, Lu L, Lu G. The Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma-2 gene (PPARγ2) is associated with increased risk of coronary artery disease: a meta-analysis. PLoS ONE. 2012;7(12):e53105. doi: 10.1371/journal.pone.0053105.
103. Шляхто Е.В., Сергеева Е.Г., Беркович О.А., Пчелина С.Н., Зарайский М.И., Ионова Ж.И. и др. Предикторы неблагоприятного течения ишемической болезни сердца: результаты динамического наблюдения. Российский кардиологический журнал. 2018;23(7):60-6. doi: 10.15829/1560-4071-2018-7-60-66.
104. Rubins HB, Robins SJ, Collins D. The veterans affairs high-density lipoprotein intervention trial: Baseline characteristics of normocholesterolemic men with coronary artery disease and low levels of high-density lipoprotein cholesterol. The American Journal of Cardiology. 1996;78(5):572-5. doi: 10.1016/s0002-9149(96)00369-4.
105. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. New England Journal of Medicine. 1987;317(20):1237-45. doi: 10.1056/nejm198711123172001.
106. El Akoum S. PPAR Gamma at the Crossroads of Health and Disease: A Masterchef in Metabolic Homeostasis. Endocrinology & Metabolic Syndrome. 2014;3:1. doi: 10.4172/2161-1017.1000126.
107. Aydoğan HY, Küçükhüseyin O, Tekeli A, Isbir T. Associations of receptor for advanced glycation end products -374 T/A and Gly82 Ser and peroxisome proliferator-activated receptor gamma Pro12Ala polymorphisms in Turkish coronary artery disease patients. Genetic Testing and Molecular Biomarkers. 2012;16(2):134-7. doi: 10.1089/gtmb.2011.0077.
108. Ott I, Koch W, von Beckerath N, de Waha R, Malawaniec A, Mehilli J. et al. Tissue factor promotor polymorphism -603 A/G is associated with myocardial infarction. Atherosclerosis. 2004;177(1):189-91. doi: 10.1016/j.atherosclerosis.2004.07.006.
109. Qi L, Qi Q, Prudente S, Mendonca C, Andreozzi F, Di Pietro N. et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA. 2013;310(8):821-8. doi: 10.1001/jama.2013.276305.
110. DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313-24. doi: 10.1038/onc.2009.358.
111. Carobbio S, Ishihara H, Fernandez-Pascual S, Bartley C, Martin-Del-Rio R, Maechler P. Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia. 2004;47(2):266-76. doi: 10.1007/s00125-003-1306-2.
112. Lauzier B, Vaillant F, Merlen C, Gélinas R, Bouchard B, Rivard M. et al. Metabolic effects of glutamine on the heart: anaplerosis versus the hexosamine biosynthetic pathway. Journal of Molecular and Cellular Cardiology. 2013;55:92-100. doi: 10.1016/j.yjmcc.2012.11.008.
113. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassaï B. et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 2011;343:d4169. doi: 10.1136/bmj.d4169.
114. Seidu S, Achana FA, Gray LJ, Davies MJ, Khunti K. Effects of glucose-lowering and multifactorial interventions on cardiovascular and mortality outcomes: a meta-analysis of randomized control trials. Diabetic Medicine. 2016;33(3):280-9. doi: 10.1111/dme.12885.
115. Raj R, Bhatti JS, Badada SK, Ramteke PW. Genetic basis of dyslipidemia in disease precipitation of coronary artery disease (CAD) associated type 2 diabetes mellitus (T2DM). Diabetes/Metabolism Research and Reviews. 2015;31(7):663-71. doi: 10.1002/dmrr.2630.
116. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA. et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine. 2016;375(19):1834-44. doi: 10.1056/nejmoa1607141.
117. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine. 2015;373(22):2117-28. doi: 10.1056/nejmoa1504720.
118. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine. 2016;375(4):311-22. doi: 10.1056/nejmoa1603827.
119. Ross S, Gerstein HC, Eikelboom J, Anand SS, Yusuf S, Paré G. Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. European Heart Journal. 2015;36(23):1454-62. doi: 10.1093/eurheartj/ehv083.
120. Ahmad OS, Morris JA, Mujammami M, Forgetta V, Leong A, Li R. et al. A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease. Nature Communications. 2015;6(1):7060. doi: 10.1038/ncomms8060.