Генетические аспекты нейропсихиатрической симптоматики при болезни Паркинсона
А. А. Рагимова
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
М. А. Самушия
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
PDF
PDF (English)

Ключевые слова

болезнь Паркинсона
неврология
генетика
психиатрия

Как цитировать

Рагимова А. А., Самушия М. А. Генетические аспекты нейропсихиатрической симптоматики при болезни Паркинсона // Кремлевская медицина. Клинический вестник. 2019. Т. № 1. С. 58-68.
PDF
PDF (English)

Аннотация

В обзоре литературы представлены современные данные о влиянии генов COMT, MAO-A, MAO-B, DAT, DRD2, VMAT2,TPH2 и SNCA на течение болезни Паркинсона, эффективность терапии и их связи с рядом психических расстройств. В работе изучены 77 статьи и монографии, посвящённые проблематике генетики, неврологии и психиатрии, опубликованные в период с 1972 по 2018 г. Своевременное распознание генетических особенностей течения заболеваний позволит оптимизировать медикаментозную терапию, спрогнозировать развитие ранних осложнений заболевания, таких как когнитивное снижение, аффективные, обсессивно-компульсивные, психотические расстройства, а также нарушения импульс-контроля. Генетическое прогнозирование также особенно актуально в аспекте подготовки и отбора пациентов на операции для глубокой стимуляции мозга.
PDF
PDF (English)

Литература

1. Todorova A, Jenner P, Ray Chaudhuri K. Non-motor Parkinson’s: integral to motor Parkinson’s, yet often neglected. Practical Neurol. 2014; 14(5): 310-322. doi:10.1136/practneurol-2013-000741.
2. Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP et al. The PRIAMO study: A multicenter assessment of non-motor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009; 24(11): 1641-1649. doi:10.1002/mds.22643.
3. Hoehn M, Yahr M. Parkinsonism: onset, progression and mortality. Neurology. 1967; 17(5): 427–42. doi:10.1212/wnl.17.5.427.PMID 6067254.
4. Снежневский А.В. Шизофрения. Мультидисциплинарное исследование. Под ред. А.В. Снежневского. М.: Медицина; 1972.
5. Katunina E, Titova N. The epidemiology of non-motor symptoms in PD (cohort and other studies). In: Chaudhuri KR, Titova N, editors. Non-motor Parkinson’s: The Hidden Face. Intern. Rev. Neurobiol. Vol. 33. Cambridge, MA: Academic Press is an imprint of Elsevier; 2017. doi:10.1016/bs.irn.2017.05.012. 13.
6. Gelders G, Baekelandt V, Perren AV. Linking Neuroinflammation and Neurodegeneration in Parkinson’s Disease. J. Immunol. Res. 2018; 1-12. doi:10.1155/2018/4784268.
7. Chang D, Nalls MA, Hallgrímsdóttir IB, Hunkapiller J, van der Brug M, Cai F et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nature Genetics. 2017; 49(10): 1511-16.doi:10.1038/ng.3955.
8. George G, Singh S, Lokappa SB, Varkey J. Gene co-expression network analysis for identifying genetic markers in Parkinson's disease- a three-way comparative approach. Genomics. 2018. doi:10.1016/j.ygeno.2018.05.005.
9. Freeze B, Acosta D, Pandya S, Zhao Y, Raj A. Regional expression of genes mediating trans-synaptic alpha-synuclein transfer predicts regional atrophy in Parkinson disease. NeuroImage: Clin. 2018; 18: 456-466. doi:10.1016/j.nicl.2018.01.009.
10. Corrado L, De Marchi F, Tunesi S, Oggioni GD, Carecchio M, Magistrelli L et al. The Length of SNCARep1 Microsatellite May Influence Cognitive Evolution in Parkinson’s Disease. Front. Neurol. 2018; 9. doi:10.3389/fneur.2018.00213.
11. Wooten GF. Are men at greater risk for Parkinson’s disease than women? J. Neurol., Neurosurgery & Psychiatry. 2004; 75(4):637-639. doi:10.1136/jnnp.2003.020982.
12. Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA, Bryois J et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018; 50(7):920-927. doi:10.1038/s41588-018-0151-7.
13. St Clair D. Copy Number Variation and Schizophrenia. Schizophrenia Bulletin.2009. 35(1), 9-12. doi:10.1093/schbul/sbn147.
14. Cook EH, Scherer SW. Copy-number variations associated with neuropsychiatric conditions. Nature. 2008; 455(7215): 919-923.doi:10.1038/nature07458.
15. Adams DH, Close S, Farmen M, Downing AM, Breier A, Houston JP. Dopamine receptor D3 genotype association with greater acute positive symptom remission with olanzapine therapy in predominately caucasian patients with chronic schizophrenia or schizoaffective disorder. Human Psychopharmacology: Hum Psychopharmacol. 2008; 23(4): 267-274.doi:10.1002/hup.930.
16. Domingo A, Klein C. Genetics of Parkinson disease. Neurogenetics, Part I Handbook Clin. Neurol. 2018: 211-227.doi:10.1016/b978-0-444-63233-3.00014-2.
17. Bai Y, Dong L, Huang X, Zheng S, Qiu P, Lan F. Associations of rs823128, rs1572931, and rs823156 polymorphisms with reduced Parkinson’s disease risks. NeuroReport. 2017; 28(14): 936-941. doi:10.1097/wnr.0000000000000846.
18. Geissler JM, Romanos M, Gerlach M, Berg D, Schulte C et al. No genetic association between attention-deficit/hyperactivity disorder (ADHD)and Parkinson’s disease in nine ADHD candidate SNPs. Atten Defic Hyperact Disord. 2017; 9(2): 121-127.doi:10.1007/s12402-017-0219-8.
19. Gadit A. Schizophrenia and Parkinson’s disease: challenges in management. BMJ Case Rep. 2011. doi:10.1136/bcr.11.2011.5108.
20. Ghanemi A. Schizophrenia and Parkinson’s disease: Selected therapeutic advances beyond the dopaminergic etiologies. Alexandria J. Med. 2013; 49(4): 287-291. doi:10.1016/j.ajme.2013.03.005.
21. Birtwistle J, Baldwin D. Role of dopamine in schizophrenia and Parkinson’s disease. Brit. J. Nursing. 1998; 7(14): 832-841.doi:10.12968/bjon.1998.7.14.5636.
22. Aro S, Aro H, Keskimäki I. Socio-economic Mobility among Patients with Schizophrenia or Major Affective Disorder a 17-YearRetrospective Follow-Up. Brit. J. Psychiat. 1995; 166 (6): 759-767.doi:10.1192/bjp.166.6.759.
23. Петрова Н.Н., Дорофейкова М.В., Воинкова Е.Е. Когнитивные нарушения у больных шизофренией на разных этапах течения заболевания. Журнал неврологии и психиатрии им С.С. Корскова. 2016; 116(4): 10.
24. Левин О.С., Федорова Н.В. Болезнь Паркинсона. М: Медпресс-информ, 2012.
25. Ritsner MS. Brain Protection in Schizophrenia, Mood and Cognitive Disorders. Dordrecht: Springer; 2010.
26. Livingstone PD, Wonnacott S. Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem. Pharmacol.2009; 78(7): 744-755. doi:10.1016/j.bcp.2009.06.004.
27. Quik M, Oleary K, Tanner CM. Nicotine and Parkinson’s disease: Implications for therapy. Movement Dis. 2008; 23 (12): 1641-1652. doi:10.1002/mds.21900.
28. Lin CH, Fan JY, Lin HI, Chang CW, Wu YR. Catechol- Catechol-O-methyltransferase (COMT) genetic variants are associated with cognitive decline in patients with Parkinson's disease. Parkinsonism Relat Disord. 2018; 50: 48-53. doi:10.1016/j.parkreldis.2018.02.015.
29. Boot E, Butcher NJ, Udow S, Marras C, Mok KY, Kaneko S et al. Typical features of Parkinson disease and diagnostic challenges with microdeletion 22q11.2. Neurology. 2018; 90(23). doi:10.1212/wnl.0000000000005660.
30. Wang S, Mao S, Xiang D, Fang C. Association between depression and the subsequent risk of Parkinson’s disease: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 86: 186-192. doi:10.1016/j.pnpbp.2018.05.025.
31. Fung WL, McEvilly R, Fong J, Silversides C, Chow E, Bassett A. Elevated Prevalence of Generalized Anxiety Disorder in Adults With 22q11.2 Deletion Syndrome. Am J Psychiatry. 2010; 167(8): 998-998. doi:10.1176/appi.ajp.2010.09101463.
32. Wither RG, Borlot F, MacDonald A, Butcher NJ, Chow EWC, Bassett AS et al. 22q11.2 deletion syndrome lowers seizure threshold in adult patients without epilepsy. Epilepsia. 2017; 58(6): 1095-1101. doi:10.1111/epi.13748.
33. Bassett AS, Chow EW. Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep. 2008; 10(2): 148-157. doi:10.1007/s11920-008-0026-1.
34. Chow EW, Watson M, Young DA, Bassett AS. Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr Res. 2006; 87(1-3): 270-278. doi:10.1016/j.schres.2006.04.007.
35. Białecka M, Droździk M, Kłodowska-Duda G, Honczarenko K, Gawrońska-Szklarz B, Opala G et al. The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson's disease. Acta Neurol Scand. 2004;110 (4): 260-266. doi:10.1111/j.1600-0404.2004.00315.x.
36. Zhang J, Chen Y, Zhang K, Yang H, Sun Y, Fang Y et al. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder. Biol Psychiatry. 2010; 68(9): 795-800. doi:10.1016/j.biopsych.2010.06.004.
37. Leuchter AF, McCracken JT, Hunter AM, Cook IA, Alpert JE. Monoamine oxidase a and catechol-o-methyltransferase functional polymorphisms and the placebo response in major depressive disorder. J Clin Psychopharmacol. 2009; 29(4): 372-377. doi:10.1097/jcp.0b013e3181ac4aaf.
38. Lin YM, Davamani F, Yang WC, Lai TJ, Sun HS. Association analysis of monoamine oxidase A gene and bipolar affective disorder in Han Chinese. Behav Brain Funct. 2008;4(1): 21.doi:10.1186/1744-9081-4-21.
39. Wei YL, Li CX, Li SB, Liu Y, Hu L. Association study of monoamine oxidase A/B genes and schizophrenia in Han Chinese. Behav Brain Funct. 2011; 7(1): 42. doi:10.1186/1744-9081-7-42.
40. Ni X, Sicard T, Bulgin N, Bismil R, Chan K, McMain S et al. Monoamine oxidase A gene is associated with borderline personality disorder. Psychiatr Gene. 2007;17 (3): 153-157. doi:10.1097/ypg.0b013e328016831c.
41. Huang S, Cook DG, Hinks LJ, Chen XH, Ye S, Gilg JA et al. CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behavior and cotinine levels in 1518 UK adolescents. Pharmacogenet Genomics. 2005; 15 (12): 839-850. doi:10.1097/01213011-200512000-00002.
42. Li J, Kang C, Zhang H, Wang Y, Zhou R, Wang B et al. Monoamine oxidase A gene polymorphism predicts adolescent outcome of attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2007; 144B (4): 430-433. doi:10.1002/ajmg.b.30421.
43. Aboukarr A, Giudice M. Interaction between Monoamine Oxidase B Inhibitors and Selective Serotonin Reuptake Inhibitors. Can J Hosp Pharm. 2018; 71 (3). doi:10.4212/cjhp.v71i3.2586.
44. McDonell KE, van Wouwe NC, Harrison MB, Wylie SA, Claassen DO. Taq1A polymorphism and medication effects on inhibitory action control in Parkinson disease. Brain Behav. 2018; 8(7). doi:10.1002/brb3.1008.
45. Heiden P, Heinz A, Romanczuk-Seiferth N. Pathological gambling in Parkinson’s disease: what are the risk factors and what is the role of impulsivity? Eur J Neurosci. 2016; 45(1): 67-72.doi:10.1111/ejn.13396.
46. Zainal Abidin S, Tan EL, Chan SC, Jaafar A, Lee AX, Abd Hamid MH et al. DRD and GRIN2B polymorphisms and their association with the development of impulse control behavior among Malaysian Parkinson’s disease patients. BMC Neurol. 2015; 15(1). doi:10.1186/s12883-015-0316-2.
47. Della Torre OH, Paes LA, Henriques TB, de Mello MP, Celeri EHRV, Dalgalarrondo P et al. Dopamine D2 receptor gene polymorphisms and externalizing behaviors in children and adolescents. BMC Med Genet. 2018; 19(1). doi:10.1186/s12881-018-0586-9.
48. Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Zald DH. Individual differences in dopamine D2 receptor availability correlate with reward valuation. Cogn Affect Behav Neurosci. 2018; 18(4): 739-747. doi:10.3758/s13415-018-0601-9.
49. Aversa D, Martini A, Guatteo E, Pisani A, Mercuri NB, Berretta N. Reversal of dopamine-mediated firing inhibition through activation of the dopamine transporter in substantia nigra pars compacta neurons. Brit. J. Pharmacol. 2018; 175 (17): 3534-3547. doi:10.1111/bph.14422.
50. Moreau C, Meguig S, Corvol JC, Labreuche J, Vasseur F, Duhamel A et al. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson’s disease. Brain. 2015; 138(5): 1271-1283. doi:10.1093/brain/awv063.
51. Le Strat Y, Ramoz N, Pickering P, Burger V, Boni C, Aubin HJ et al. The 3' part of the dopamine transporter gene DAT1/SLC6A3 is associated with withdrawal seizures in patients with alcohol dependence. Alcohol Clin Exp Res. 2007;32(1):27-35. doi:10.1111/j.1530-0277.2007.00552.x.
52. Cormier F, Muellner J, Corvol JC. Genetics of impulse control disorders in Parkinson’s disease. J Neural Transm (Vienna). 2012;120(4): 665-671. doi:10.1007/s00702-012-0934-4.
53. Gao L, Gao H. Association between 5-HTTLPR polymorphism and Parkinson’s disease: a meta analysis. Mol Biol Rep. 2014; 41(9): 6071-6082. doi:10.1007/s11033-014-3484-z.
54. Cilia R, Benfante R, Asselta R, Marabini L, Cereda E, Siri C et al. Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson’s disease. Parkinsonism Relat Disord. 2016; 29: 96-103. doi:10.1016/j.parkreldis.2016.05.017.
55. Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002; 15(4-6):603-616. doi:10.1016/s0893-6080(02)00052-7.
56. Nakamura K, Matsumoto M, Hikosaka O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J Neurosci.. 2008; 28(20): 5331-5343. doi:10.1523/jneurosci.0021-08.2008.
57. Rogers RD. The Roles of Dopamine and Serotonin in Decision Making: Evidence from Pharmacological Experiments in Humans. Neuropsychopharmacology. 2010; 36(1): 114-132. doi:10.1038/npp.2010.165.
58. Cilia R, Benfante R, Asselta R, Marabini L, Cereda E, Siri C et al. Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson’s disease. Parkinsonism Relat Disord. 2016; 29: 96-103. doi:10.1016/j.parkreldis.2016.05.017.
59. Juhasz G, Downey D, Hinvest N, Thomas E, Chase D, Toth ZG et al. Risk-taking behavior in a gambling task associated with variations in the tryptophan hydroxylase 2 gene: relevance to psychiatric disorders. Neuropsychopharmacology. 2009; 35(5): 1109-1119. doi:10.1038/npp.2009.216.
60. Ke L, Qi ZY, Ping Y, Ren CY. Effect of SNP at position40237 in exon 7 of the TPH2 gene on susceptibility to suicide. Brain Res. 2006; 1122(1): 24-26. doi:10.1016/j.brainres.2006.09.007.
61. Levey DF, Le-Niculescu H1, Frank J2, Ayalew M1, Jain N1, Kirlin B et al. Genetic risk prediction and neurobiological understanding of alcoholism. Transl Psychiatry. 2014; 4(5). doi:10.1038/tp.2014.29.
62. Corrado L, Marchi FD, Tunesi S, Oggioni GD, Carecchio M, Magistrelli L et al. The Length of SNCARep1 Microsatellite May Influence Cognitive Evolution in Parkinson’s Disease. Front. Neurol. 2018; 9. doi:10.3389/fneur.2018.00213.
63. Lohr KM, Miller GW. VMAT2 and Parkinson’s disease: harnessing the dopamine vesicle. Expert Rev Neurother. 2014; 14(10):1115-1117. doi:10.1586/14737175.2014.960399.
64. Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B. Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Hum Mol Genet. 2005;15(2): 299-305. doi:10.1093/hmg/ddi445.
65. Alter SP, Stout KA, Lohr KM, Taylor TN, Shepherd KR, Wang M et al. Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration. Exp. Neurol. 2016; 275: 17-24.doi:10.1016/j.expneurol.2015.09.016.
66. Gilliam TC, Freimer NB, Kaufmann CA, Powchik PP, Bassett AS, Bengtsson U et al. Deletion mapping of DNA markers to a region of chromosome 5 that cosegregates with schizophrenia. Genomics. 1989; 5(4): 940-944. doi:10.1016/0888-7543(89)90138-9.
67. Eiden LE, Weihe E. VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci. 2011; 1216(1): 86-98. doi:10.1111/j.1749-6632.2010.05906.x.
68. Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V et al. VMAT2 knockout mice: Heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci U S A. 1997; 94(18): 9938-9943. doi:10.1073/pnas.94.18.9938.
69. Baumann A, Moreira CG, Morawska MM, Masneuf S, Baumann CR, Noain D. Preliminary Evidence of Apathetic-Like Behavior in Aged Vesicular Monoamine Transporter 2 Deficient Mice. Front Hum Neurosci. 2016; 10. doi:10.3389/fnhum.2016.00587.
70. Chu TT, Liu Y. An integrated genomic analysis of gene function correlation on schizophrenia susceptibility genes. J. Hum. Genet.2010; 55(5): 285-292. doi:10.1038/jhg.2010.24.
71. Berg KA, Harvey JA, Spampinato U, Clarke WP. Physiological relevance of constitutive activity of 5-HT2A and5-HT2C receptors. Trends Pharmacol Sci. Sci. 2005; 26(12): 625-630.doi:10.1016/j.tips.2005.10.008.
72. Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther. 2003; 306(3): 954-964. doi:10.1124/jpet.103.051797.
73. Stefanis L. α-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med. 2012; 2(2). doi:10.1101/cshperspect.a009399.
74. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E V Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003; 24(2): 197-211. doi:10.1016/s0197-4580(02)00065-9.
75. Błaszczyk JW. Parkinson’s Disease and Neurodegeneration: GABA-Collapse Hypothesis. Front Neurosci. 2016; 10.doi:10.3389/fnins.2016.00269.
76. Ephraty L, Porat O, Israeli D, Cohen OS, Tunkel O, Yael S et al. Neuropsychiatric and cognitive features in autosomal-recessive early parkinsonism due to PINK1 mutations. Mov Disord. 2007; 22(4): 566-569. doi:10.1002/mds.21319.
77. Abul-Husn NS, Owusu Obeng A, Sanderson SC, Gottesman O, Scott SA. Implementation and utilization of genetic testing in personalized medicine. Pharmgenomics Pers Med. 2014: 227. doi:10.2147/pgpm.s48887.
78. Lohmann E, Welter ML, Fraix V, Krack P, Lesage S, Laine S et al. Are parkin patients particularly suited for deep-brain stimulation? Mov Disord. 2008; 23(5): 740-743. doi:10.1002/mds.21903.
79. Kasten M, Hartmann C, Hampf J, Schaake S, Westenberger A, Vollstedt EJ et al. Genotype-Phenotype Relations for the Parkinsons Disease Genes Parkin, PINK1,DJ1: MDSGene Systematic Review. Mov Disord. 2018; 33(5):730-741. doi:10.1002/mds.27352.
80. Иванец Н.Н., Кинкулькина М.А., Тихонова Ю.Г., Рагимов А.А., Дашкова Н.Г., Кузнецов О.Е и др. Взаимосвязь полиморфизмов генов белков-переносчиков серотонина и дофамина (SLC6A4, SLC6A3) с переносимостью антидепрессантов разных классов. Психиатрия и психофармакотерапия. 2015; 17(3): 13–21.