Роль полиморфизмов аллельных вариантов rs1333049 локуса хромосомы 9p21.3 в генезе кардиоваскулярных заболеваний
С. Ю. Никулина
Красноярский государственный медицинский университет им. проф. В. Ф. Войно-Ясенецкого
А. А. Чернова
Д. А. Никулин
И. М. Платунова
Д. А. Яковлева
А. Н. Келеменева

Ключевые слова

инфаркт миокарда
однонуклеотидный полиморфизм
rs1333049
локус 9р21.3
атеросклероз

Как цитировать

[1]
.

Аннотация

В статье проведено описание ассоциативных связей 9 хромосомы с различными сердечно-сосудистыми заболеваниями. Установлена роль локуса 9р21.3 в предрасположенности к развитию острого коронарного синдрома у европеоидной расы и в России. Небольшой участок генома (размером около 58kb), расположенный на коротком плече 9 хромосомы (локус 9р21.3) имеет сильные ассоциативные связи с возникновением острого инфаркта миокарда (ОИМ). В этом регионе отсутствуют гены, кодирующие белки, некодирующая регуляторная рибонуклеиновая кислота ANRIL расположена именно там,  и это делает затруднительным интерпретацию взаимосвязи локуса 9р21.3 с ишемической болезнью сердца (ИБС) и ОИМ. Развитие ИБС происходит за счет клеточной пролиферации в некодируемом участке РНК.

Литература

1. H. Schunkert, A. Götz, P. Braund et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008; 117( 3): 1675-1684.
2. E. Biros, M. Cooper, L. J. Palmer et al. Association of an allele on chromosome 9 and abdominal aortic aneurysm. Atherosclerosis. 2010; 212 ( 2): 539-542.
3. Y. Wei, J. Xiong, S. Zuo et al. Association of polymorphisms on chromosome 9p21.3 region with increased susceptibility of abdominal aortic aneurysm in a Chinese Han population. J. Vasc. Surg. 2014; 59 (4): 879-885.
4. M. J. Bown, P. S. Braund, J. Thompson et al. Association between the coronary artery disease risk locus on chromosome 9p21.3 and abdominal aortic aneurysm . Circ. Cardiovasc. Genet. 2008; 1(1): 39-42.
5. D. Girelli, N. Martinelli, F. Peyvandi et al.Genetic architecture of coronary artery disease in the genome-wide era: implications for the emerging “golden dozen” loci. Semin. Thromb. Hemost. 2009; 35(7): 671-682.
6. Y. Gong, A. L. Beitelshees, R. M. Cooper-DeHoff et al.Chromosome 9p21 haplotypes and prognosis in white and black patients with coronary artery disease. Circ. Cardiovasc. Genet. 2011;4 ( 2) : 169-178.
7. L. Gong, J. Chen, J. Lu et al. The 9p21 locus is associated with coronary artery disease and cardiovascular events in the presence (but not in the absence) of coronary calcification. Plos One. 2014; 9 (4): e94823.
8. C. Cluett, M. M. McDermott, J. Guralnik et al. The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ. Cardiovasc. Genet. 2009; 2( 4): 347-353.
9. J. M. Murabito, C. C. White, M. Kavousi et al. Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ. Cardiovasc. Genet. 2012; 5 (1): 100-112.
10. S. Phababpha, U. Kukongviriyapan, P. Pakdeechote et al. Association of arterial stiffness with single nucleotide polymorphism rs1333049 and metabolic risk factors. Cardiovasc. Diabetol. 2013; 12: 93
11. B. Bayoglu, H. A. Cakmak, H. Yuksel et al. Chromosome 9p21 rs10757278 polymorphism is associated with the risk of metabolic syndrome. Mol. Cel. Biochem. 2013; 379 (1-2): 77-85.
12. Максимов В.Н., Куликов И.В., Орлов П.С. и др. Проверка взаимосвязи между девятью однонуклеотидными полиморфизмами и инфарктом миокарда на сибирской популяции. Вестник РАМН 2012; 5: 24–29.
13. Шестерня П.А., Шульман В.А., Никулина С.Ю. и др. Предикторная роль полиморфизмов хромосомы 9р21.3 и их взаимосвязь с отягощенной наследственностью в развитии инфаркта миокарда. Российский Кардиологический Журнал 2012; 6(98): 14–8.
14. Schunkert H., Erdmann J., Samani N.J. Genetics of myocardial infarction: a progress report. Eur Heart J 2010; 31(8): 918–25.
15. Buysschaert I., Carruthers K.F., Dunbar D.R. et al. A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: The GRACE Genetics Study. Eur Heart J 2010; 31: 1132–41.
16. Dandona S., Stewart A.F.R., Chen L. et al. Gene dosage of the common variant 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol 2010; 56: 479–86.
17. Patel R.S., Su S., Neeland I.J. et al. The chromosome 9p21 risk locus is associated with angiographic and progression of coronary artery disease. Eur Heart J 2010; 31: 3017–23.
18. Chan K., MotterleA., Laxton R.C. et al. Common variant on chromosome 9p21 predict severity of coronary artery disease. J Am Coll Cardiol 2011; 57: 1497–8.
19. Adrissino D., Berzuini C., Merlini P.A. et al. Influence of 9p21.3 genetic variants on clinical and angiographic outcomes in early-onset myocardial infarction. J Am Coll Cardiol 2011; 58(4): 426–34.
20. Genome-wide association analysis of coronary artery disease. N. J. Samani, J. Erdmann, A. S. Hall et al. N. Engl. J. Med. 2007; 357(5): 443-453.
21. A common allele on chromosome 9 associated with coronary heart disease .R. McPherson, A. Pertsemlidis, N. Kavaslar et al. Science. 2007; 316 (5830): 1488-1491.
22. McPherson, R. Chromosome 9p21.3 locus for coronary artery disease R. McPherson. J. Am. Coll. Cardiol. 2013; 62( 15): 1382-1383.
23. B. D. Horne, J. F. Carlquist, J. B. Muhlestein et al. Association of variation in the chromosome 9p21 locus with myocardial infarction versus chronic coronary artery disease. Circ. Cardiovasc. Genet. 2008; 1( 2): 85-92.
24. A. Helgadottir, G. Thorleifsson, A. Manolescu et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007; 316 (5830):1491-1493.
25. Q. Zeng, Y. Yuan, S. Wang et al. Polymorphisms on chromosome 9p21 confer a risk for acute coronary syndrome in a Chinese Han population. Can. J. Cardiol. 2013; 29 (8): 940-944.
26. Q. Zhang, X. F. Wang, S. S. Cheng .et al. Three SNPs on chromosome 9p21 confer increased risk of myocardial infarction in Chinese subjects. Atherosclerosis. 2009; 207(1): 26-28.
27. J. Guo, W. Li, Z. Wu et al. Association between 9p21.3 genomic markers and coronary artery disease in East Asians: a meta-analysis involving 9,813 cases and 10,710 controls. Mol Biol Rep; 2013; 40 (1): 337-343.
28. H. Haslacher, T. Perkmann, F. Ratzinger et al. 9p21.3 risk locus is associated with first-ever myocardial infarction in an Austrian cohort. Journal of Cardiovascular Medicine. 2016; 17(8): 595-600.
29. W. Meng, A. E. Hughes, C. C. Patterson et al. Chromosome 9p21.3 is associated with early-onset coronary heart disease in the Irish population. Dis. Markers. 2008; 25(2): 81-85.
30. R. Farzaneh-Far, B. Na, N. B. Schiller et al. Lack of association of chromosome 9p21.3 genotype with cardiovascular structure and function in persons with stable coronary artery disease: the heart and soul study. Atherosclerosis. 2009; 205(2): 492-496.
31. B. D. Horne, J. F. Carlquist, J. B. Muhlestein et al. Associations with myocardial infarction of six polymorphisms selected from a three-stage genome-wide association study. Am. Heart J. 2007; 154 (5): 969-975.
32. A. F. Stewart, S. Dandona, L. Chen et al. Kinesin family member 6 variant Trp719Arg does not associate with angiographically defined coronary artery disease in the Ottawa Heart Genomics Study. J. Am. Coll. Cardiol. 2009; 53 (16):1471-1472.
33. D. Saleheen, M. Alexander, A. Rasheed et al. Association of the 9p21.3 locus with risk of first-ever myocardial infarction in pakistanis: Case-control study in south asia and updated meta-analysis of Europeans. Arterioscler. Thromb. Vasc. Biol. 2010; 30 (7): 1467-1473.
34. M. Junyent, K. L. Tucker, J. Shen et al. A composite scoring of genotypes discriminates coronary heart disease risk beyond conventional risk factors in the Boston Puerto Rican Health Study . Nutr. Metab. Cardiovasc. Dis. 2010; 20, (3): 157-164.
35. J. van Setten, I. Isgum, J. Smolonska et al. Genome-wide association study of coronary and aortic calcification implicates risk loci for coronary artery disease and myocardial infarction. Atherosclerosis. 2013; 228 (2): 400-405.
36. N. Yiannakouris, M. Katsoulis, V. Dilis .et al. Genetic predisposition to coronary heart disease and stroke using an additive genetic risk score: A population-based study in Greece. Atherosclerosis. 2012; 222(1): 175-179.
37. W. Koch, P. Hoppmann, A. Schömig et al. Variations of specific non-candidate genes and risk of myocardial infarction: A replication study. Int. J. Cardiol. 2011; 147(1): 38-41.
38. W. Koch, S. Türk, A. Erl et al. The chromosome 9p21 region and myocardial infarction in a European population. Atherosclerosis. 2011; 217(1): 220-226.
39. D. Arasaratnam, D. Elliott, T. Medley et al. The association of chromosome 9p21 variation and coronary artery disease replicated in an Australian Cohort. Heart Lung Circ. 2012; 21(1): S272-S272.
40. K. Hinohara, T. Nakajima, M. Takahashi et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. J. Hum. Genet. 2008; 53 (4): 357-359.
41. G. Q. Shen, L. Li, S. Rao et al. Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2008; 28 (2): 360-365.
42. T. Pinós, N. Fuku, Y. Cámara et al. The rs1333049 polymorphism on locus 9p21.3 and extreme longevity in Spanish and Japanese cohorts. Age (Dordr.). 2014; 36, (2): 933-943.
43. A. A. Bhanushali, A. Contractor, B. R. Das. Variant at 9p21 rs1333049 is associated with age of onset of coronary artery disease in a Western Indian population: a case control association study. Genet. Res. (Camb.). 2013; 95 (5). 138-145.
44. J. Shanker, P. Arvind, S. Jambunathan et al. Genetic analysis of the 9p21.3 CAD risk locus in Asian Indians. Thromb. Haemost. 2014. 111 (5). 960-969.
45. M. D. Jansen, G. P. Knudsen, R. Myhre. Genetic variants in loci 1p13 and 9p21 and fatal coronary heart disease in a Norwegian case-cohort study. Mol. Biol. Rep. 2014; 41 (5). 2733-2743.
46. V. N. Maksimov, I. V. Kulikov, P. S. Orlov et al. Evaluation of association between 9 genetic polymorphism and myocardial infarction in the Siberian population. Vestn. Ros. Akad. Med. Nauk. 2012; (5). 24-29.
47. M. Plichart, J. P. Empana, J. C. Lambert et al. Single polymorphism nucleotide rs1333049 on chromosome 9p21 is associated with carotid plaques but not with common carotid intima-media thickness in older adults. A combined analysis of the Three-City and the EVA studies. Atherosclerosis. 2012; 222 (1). 187-190.
48. M. S. Cunnington, B. M. Mayosi, D. H. Hall et al. Novel genetic variants linked to coronary artery disease by genome-wide association are not associated with carotid artery intima-media thickness or intermediate risk phenotypes. Atherosclerosis. 2009; 203 (1). 41-44.
49. A. Congrains, K. Kamide, R. Oguro et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2AB. Atherosclerosis. 2012; 220 (2). 449-455.
50. J. L. Anderson, B. D. Horne, M. J. Kolek et al. Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am. Heart J. 2008; 156, (6). 1155-1162.e2.
51. P. Hoppmann, A. Erl, S. Türk et al. No association of chromosome 9p21.3 variation with clinical and angiographic outcomes after placement of drug-eluting stents. JACC. Cardiovasc. Interv. 2009; 2 (11). 1149-1155.
52. A. Muendlein, C. H. Saely, S. Rhomberg et al. Evaluation of the association of genetic variants on the chromosomal loci 9p21.3, 6q25.1, and 2q36.3 with angiographically characterized coronary artery disease. Atherosclerosis. 2009; 205 (1). 174-180.
53. J. L. Anderson, B. D. Horne. 9p21locus and coronary heart disease: initiator, promoter, or precipitator? J. Am. Col. Cardiol. 2010; 56 (6). 487-489.
54. I. Buysschaert, K. F. Carruthers, D. R. Dunbar et al. A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: The GRACE genetics study. Eur. Heart J. 2010; 31 (9). 1132-1141.
55. M. Hara, Y. Sakata, D. Nakatani et al. Reduced risk of recurrent myocardial infarction in homozygous carriers of the chromosome 9p21 rs1333049 C risk allele in the contemporary percutaneous coronary intervention era: a prospective observational study. BMJ Open. 2014; 4 (8). e005438.
56. M. Fan, S. Dandona, R. McPherson et al. Two chromosome 9p21 haplotype blocks distinguish between coronary artery disease and myocardial infarction risk. Circ. Cardiovasc. Genet. – 2013; 6 (4). 372-380.
57. K. Chan, A. Motterle, R. C. Laxton et al. Common variant on chromosome 9p21 predicts severity of coronary artery disease. J. Am. Coll. Cardiol. 2011; 57 (13). 1497-1498.
58. R. S. Patel, F. W. Asselbergs, A. A. Quyyumi et al. Genetic variants at chromosome 9p21 and risk of first versus subsequent coronary heart disease events: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2014; 63 (21). 2234-2245.
59. R. S. Patel, S. Su, I. J. Neeland et al. The chromosome 9p21 risk locus is associated with angiographic severity and progression of coronary artery disease. Eur. Heart J. 2010; 31 (24). 3017-3023.
60. C. Erridge, J. Gracey, P. S. Braund. The 9p21 Locus Does Not Affect Risk of Coronary Artery Disease Through Induction of Type 1 Interferons. J. Am. Coll. Cardiol. 2013; 62 (15). 1376-1381.
61. S. Aschauer, F. Mittermayer, C. C. Wagner et al. Forearm vasodilator reactivity in homozygous carriers of the 9p21.3 rs1333049 G>C polymorphism. Eur. J. Clin. Invest. 2010; 40 (8). 700-705.
62. C. Lluis-Ganella, I. Subirana, G. Lucas et al. Assessment of the value of a genetic risk score in improving the estimation of coronary risk. Atherosclerosis. 2012; 222 (2). 456-463.
63. L. Gioli-Pereira, P. C. Santos, N. E. Ferreira et al. Higher incidence of death in multi-vessel coronary artery disease patients associated with polymorphisms in chromosome 9p21. BMC Cardiovasc. Disord. 2012; 12. 61.
64. A. Szpakowicz, M. Kiliszek, E. Waszkiewicz et al. Polymorphism of 9p21.3 locus is associated with 5-year survival in high-risk patients with myocardial infarction. Plos One. 2014; 9 (8). e104635.
65. L. Gioli-Pereira, P. C. Santos, N. E. Ferreira et al. Higher incidence of death in multi-vessel coronary artery disease patients associated with polymorphisms in chromosome 9p21. BMC Cardiovasc. Disord. 2012; 12. 61.
66. N. P. Paynter, D. I. Chasman, J. E. Buring et al. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann. Intern. Med. 2009; 150 (2). 65-72.
67. T. Scheffold, S. Kullmann, A. Huge et al. Six sequence variants on chromosome 9p21.3 are associated with a positive family history of myocardial infarction: a multicenter registry. BMC Cardiovasc. Disord. 2011; 11. 9.
68. M. D. Jansen, G. P. Knudsen, R. Myhre. Genetic variants in loci 1p13 and 9p21 and fatal coronary heart disease in a Norwegian case-cohort study. Mol. Biol. Rep. 2014; 41 (5). 2733-2743.
69. G. Smith, O. Melander, H. Lövkvist et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. J Circ. Cardiovasc. Genet. 2009; 2 (2). 159-164.
70. M. G. Heckman, A. I. Soto-Ortolaza, N. N. Diehl et al. Genetic variants associated with myocardial infarction in the PSMA6 gene and Chr9p21 are also associated with ischemic stroke. Eur. J. Neurol. 2013; 20, (2). 300-308.