The prevalence of polymorphisms of cytochrome P-450 genes and transporter genes of proteins in russian population and in three ethnic groups of the republic of dagestan
K. A. Ryzhikova
Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow
K. B. Mirzayev
S. N. Mammaiev
D. M. Gafurov
R. E. Kazakov
G. N. Shyev
E. A. Grishina
Zh. A. Sozaeva
D. A. Sychev

Keywords

cytochrome P450
pharmacological effects

How to Cite

Ryzhikova K. A., Mirzayev K. B., Mammaiev S. N., Gafurov D. M., Kazakov R. E., Shyev G. N., Grishina E. A., Sozaeva Z. A., Sychev D. A. The prevalence of polymorphisms of cytochrome P-450 genes and transporter genes of proteins in russian population and in three ethnic groups of the republic of dagestan // Kremlin Medicine Journal. 2018. VOL. № 1. С. 32-38.

Abstract

Trials which had been performed for various ethnic groups have shown marked interracial and interethnic differences in drug sensitivity. The greatest clinical significance belongs to the genes encoding liver enzymes of cytochrome P450 (CYP2C9, CYP2D6, CYP2B6, CYP3A4, CYP3A5 and CYP2C19) as well as the genes encoding transport proteins (ABCB1 and SLCO1B1), which are associated with changes in pharmacological effects in a number of drugs prescribed for cardiovascular pathologies.

References

1. Mirzayev K.B., Mammayev S.N. et al. Prevalence of CYP2C19*2 (G681A, rs4244285) polymorphic markers in Dagestan mountaineers population, its role for pharmacotherapy individualization. Russian medical lead. 2014; 14(2): 57-62. In Russian.
Mirzaev K.B., Sychev D.A. et al. CYP2C19*2, CYP2C19*3, CYP2C19*17 allele and genotype frequencies in clopidogreltreated patients with coronary heart disease from the Russian population. Biomedicine. 2013; 1: 117-128. In Russian.
3. Aszalos A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1). Clinical aspects. Drug. Discov. Today. 2007; 12: 838–843.
4. Becquemont L., Alfirevic A., Amstutz U., et al. Pharmacogenomics. Practical recommendations for pharmacogenomics-based prescription. ESF-UB Conference on Pharmacogenetics and Pharmacogenomics. 2010; 12(1): 113-124.
5. Beitelshees A.L., Horenstein R.B., Vesely M.R., et al. Pharmacogenetics and clopidogrel response in patients undergoing percutaneous coronary interventions. Clin. Pharmacol. Ther. 2011; 89: 455–459.
6. Bernal, M.L., Sinues, B., Fanlo, A., et al. Frequency distribution of C3435T mutation in exon 26 of the MDR1 gene in a Spanish population. Ther. Drug Monit. 2003; 25 (1): 107– 111.
7. Bonello L., Armero S., Ait Mokhtar O., et al. Clopidogrel loading dose adjustment according to platelet reactivity monitoring in patients carrying the 2C19*2 loss of function polymorphism. J. Am. Coll. Cardiol. 2010; 56(20): 1630-1636.
8. Bulayeva K.B. Overview of genetic-epidemiological studies in ethnically and demographically diverse isolates of Dagestan, Northern Caucasus, Russia. Croat. Med. J. 2006; 47(4): 641-648.
9. Canestaro W.J., Austin M.A., Thummel K.E.Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review. Genet. Med. 2014.
10. Collet J.P., Hulot J.S., Pena A., et al. Cytochrome P4502C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009; 373: 309-317.
11. Gaikovitch. E.A., Cascorbi I., Mrozikiewicz M.P., et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russia population. Eur. J. Clin. Pharmacol. 2003; 59: 303312.
12. Geisler T., Schaeffeler E., Dippon J., et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics. 2008; 9(9): 1251-1259.
13. Kalow W. Pharmacogenomics: historical perspective and current status. Methods. Mol. Biol. 2005; 311: 3-15.
14. Kimura M., Ieiri I., Mamiya K., et al. Genetic polymorphism of cytochrome P450 s, CYP2C19, and CYP2C9 in a Japanese population. Ther. Drug. Monit. 1998; 20: 243– 247.
15. Liou S.Y., Stringer F., Hirayama M. The impact of pharmacogenomics research on drug development. Drug. Metab. Pharmacokinet. 2012; 27(1): 2-8.
16. Loebstein R. Acoding VKORCl Asp36Tyr polymorphism predisposes to warfarin resistance / R. Loebstein, I. Dvoskin, H. Halkin, M. Vecsler, A. Lubetsky, G. Rechavi, N. Amariglio, Y. Cohen, G. Ken-Dror, S. Almong, E. Gak. Blood. 2007; 109 (6): 2477–2480.
17. Maier C.L., Duncan A., Hill C.E. Pharmacogenetics in oral antithrombotic therapy. Clim. Lab. Med. 2016; 36(3): 461-472.
18. Marchani E.E., Watkins W.S., et al. Culture creates genetic structure in the Caucasus: autosomal, mitochondrial, Y-chromosomal variation in Daghestan. BMC Genet. 2008 Jul 17; 9: 47.
19. Mega J.L., Close S.L., Wiviott S.D., et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 2009; 360(4): 354-362.
20. Mrozikiewicz, P.M., Seremak-Mrozikiewicz, A., Semczuk, A., et al. The significance of C3435T point mutation of the MDR1 gene in endometrial cancer. Int. J. Gynacol. Cancer. 2007; 17 (3): 728–731.
21. Pedersen R.S., Brasch-Andersen C., Sim S.C., et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur. J. Clin. Pharmacol. 2010; 66(12): 1199-1205.
22. Rost S., Fregin A., Flunerberg M., et al. Thrombosis and Haemostasis. 2005; (4): 780-786.
23. Rost S. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORCl: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin / Rost S., Fregin A., Flunerberg M., Bevans С.G., Muller C.R., Oldenburg J. Thromb. Haemost. 2005; 94 (4): 780–786.
24. SEARCH Collaborative Group, Link E., Parish S., Armitage J., Bowman L., Heath S., Matsuda F., Gut I., Lathrop M., Collins R. SLCO1B1 variants and statin-induced myopathy a genomewide study. New. Engl. J. Med. 2008; 359(8): 789–799.
25. Simon T., Verstuyft C., Mary-Krause M., et al. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 2009; 360: 363–375.
26. Sugimoto K., Uno T., Yamazaki H., et al. Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br. J. Clin. Pharmacol. 2008; 65(3): 437439.
27. Suheir Nassar, Omar Amro, Hilal Abu-Rmaileh et al. ABCB1 C3435T and CYP2C19*2 polymorphisms in a Palestinian and Turkish population: A pharmacogenetic perspective to clopidogrel. Meta Gene 2. 2014; 314–319.
28. Sychev D.A., Denisenko N.P., Sizova Z.M., et al. The frequency of CYP2C19 genetic polymorphisms in Russian patients with peptic ulcers treated with proton pump inhibitors. Pharmacogenom. Personal. Med. 2015; 8: 111-114.
29. Sychev D.A., Shuev G.N., Chertovskih N.R., et al. The frequency of SLCO1B1*5 polymorphism genotypes among Russian and Sakha (Yakutia) patients with hypercholesterolemia. Pharmacogenom. Personal. Med. 2016; 9: 59-63.
30. Sychev D.A. Stasyak Ye.V., Ignatyev I.V., Bulytova Yu.M., Ramenskaya G.V., Kukes V.G. Klinicheskaya farmakologiya i terapiya. Сlin. Рharm. Тher. 2005; 14(4): 6063.
31. Valdes R. Jr., Yin D.T. Fundamentals of Pharmacogenetics in personalized, precision medicine. Clin. Lab. Med. 2016; 36(3): 447-459.
32. Wang S.L., Huang J., Lai M.D., Tsai J.J. Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics. 1995; 5: 37–42.
33. Weber W.W. Pharmacogenetics: from description to prediction. Clin. Lab. Med. 2008; 28(4): 499-511. 34. Yasar U., Eliasson E., Dahl M.L., et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem. Biophys. Res. Commun. 1999; 254: 628–631.
35. Zanger U.M., Raimundo S., Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch. Pharmacol. 2004; 369(1): 23–37. 36. Zhou S.F. Polymorphism of human cytochrome P450 2D6 and its clinical significance. Clin. Pharmacokinet. 2009; 48(11): 689-723.