Электрический «шторм» у больных с наследственным синдромом удлиненного интервала QT
С.Н. Чупрова
Российский национальный исследовательский медицинский университет им. Н. И. Пирогова

Ключевые слова

наследственный синдром удлиненного интервала QT
полиморфная желудочковая тахикардия
фибрилляций желудочков
имплантированный кардиовертер-дефибриллятор
электрический «шторм»
внезапная сердечная смерть
hereditary syndrome of long QT interval
polymorp

Как цитировать

Чупрова С. Электрический «шторм» у больных с наследственным синдромом удлиненного интервала QT // Кремлевская медицина. Клинический вестник. 2015. Т. № 3.

Аннотация

Наследственный синдром удлиненного интервала QT (LQTS) – заболевание, сопряженное с высоким риском вне-запной сердечной смерти (ВСС) вследствие развития полиморфной желудочковой тахикардии – фибрилляции желу-дочков. В настоящее время с целью первичной и вторичной профилактики ВСС больным с данной патологией успеш-но имплантируют кардиовертеры-дефибрилляторы. Однако после имплантации кардиовертера-дефибриллятора су-ществует риск развития электрического «шторма» – жизнеугрожающего состояния, характеризующегося появлени-ем в течение 24 ч трех или более эпизодов гемодинамически значимой желудочковой тахикардии и/или фибрилляциижелудочков, сопровождающихся срабатыванием кардиовертера-дефибриллятора (антитахикардитическая стимуля-ция или дефибрилляция).Механизм возникновения электрического «шторма» до сих пор остается неизученным, отсутствуют также и еди-ные подходы (рекомендации) к терапии данного жизнеугрожающего состояния.The hereditary syndrome of long QT interval (LQTS) is a disease with a high risk of sudden cardiac death (SCD) dueto polymorphic ventricular tachycardia – ventricular fibrillation. Currently, the prophylactics of primary and secondarySCD pathology is successfully achieved with implanting cardioverters-defibrillators. However, after this implanting there is arisk of developing the electric «storm» – a life-threatening state when three or more events of hemodynamically importanttachycardia and/or ventricular fibrillation accompanied with a cardioverter-defibrillator switching-on ( antitachycardiastimulation or defibrillation) may develop within 24 hours.Triggering mechanisms of this electric «storm» are still unclear; there is no unified recommendations either how to treatthis life-threatening state.

Литература

1. Meyer J.S., Mehdirad A., Salem B.I. et al. Sudden
Arrhythmia Death Syndrome: Importance of the Long QT
Syndrome. Am. Family Physician 2003; 68 (3): 483–488.
2. Proietti R., Sagone A. Electrical storm: Incidence,
Prognosis and Therapy. Indian Pacing and Electrophysiology J.
2011; 11 (2): 34–42.
3. Moss A., Zareba W., Hall J. et al. Effectiveness and
Limitations of β-Blocker Therapy in Congenital Long-QT
Syndrome. Circulation. 2000; 101: 616–623.
4. Li C., Hu D, Qin X. et al. Clinical features and
management of congenital long QT syndrome: a report on
54 patients from a national registry. Heart Vessel. 2004;
19: 38–42.
5. Zipes D.P., Roberts D. Results of the international
study of the implantable pacemaker cardioverter-defibrillator.
A comparison of epicardial and endocardial lead systems.
The Pacemaker-Cardioverter-Defibrillator Investigators.
Circulation. 1995; 92 (1): 59–65.
6. Villacastin J., Almendral J., Arenal A. et al. Incidence
and clinical significance of multiple consecutive, appropriate,
high-energy discharges in patients with implanted cardioverterdefibrillators.
Circulation. 1996; 93 (4): 753–762.
7. Vincent G.M. The Long QT syndrome. Indian Pacing
Electrophysiol. J. 2002; 2 (4): 127–142.
8. Eiflinq M., Razavi M., Massumi A. The evaluation and
management of electrical storm. Tex. Heart Inst. J. 2011; 38 (2):
111–121.
9. Криклер Д.М., Перельман М., Роуланд Э. Желудоч-
ковая тахикардия и фибрилляция. В кн.: Аритмии сердца.
Механизмы, диагностика, лечение; Под ред. В.Дж. Манде-
ла. М.: Медицина, 1996. 373–405.
10. Ардашев А.В. Клиническая аритмология. М.:
Медпрактика-М., 2009.
11. Emkanjoo Z., Alihasani N., Alizadeh A. et al. Electrical
storm in patients with implantable cardioverter-defibrillators:
can it be forecast? Tex. Heart Inst. J. 2009; 36 (6): 563–567.
12. Credner S.C., Klingenheben T., Mauss O. et al.
Electrical storm in patients with transvenous implantable
cardioverter-defibrillators: incidence, management and
prognostic implications. J. Am. Coll. Cardiol. 1998; 32 (7):
1909–1915.
13. Exner D.V., Pinski S.L., Wyse D.G. et al. Electrical
storm presages nonsudden death: the antiarrhythmics versus
defibrillators (AVID) trial. Circulation. 2001; 103 (16): 2066–
2071.
14. Hsieh Jen-Che, Bui M., Yallapragda S. et al. Current
Management of Electrical Storm. Acta Cardiol. Sin. 2011; 27:
71–76.
15. Zipes D.P., Camm A.J., Borggrefe M. et al. ACC/AHA/
ESC 2006 guidelines for management of patients with ventricular
arrhythmias and the prevention of suddencardiac death: a
report of the American College of Cardiology/American Heart
Association Task Force and the EuropeanSociety of Cardiology
Committee for Practice Guidelines (Writing Committee to
Develop Guidelines for Managementof Patients with Ventricular
Arrhythmias and the Preventionof Sudden Cardiac Death). J.
Am. Coll. Cardiol. 2006; 48 (5): 247–346.
16. Margues J.S., Veiga A., Nobrega J. et al. Electrical
storm induced by H1N1 A influenza infection. Europace. 2010;
12 (2): 294–295.
17. Brooks W.W., Conrad C.H., Morgan J.P. Reperfusion
induced arrhythmias following ischaemia in intact rat heart: role
of intracellular calcium. Cardiovasc. Res. 1995; 29: 536–542.
18. Tribulova N., Seki S., Radosinska J. et al. Myocardial
Ca2+ handling and cell-to-cell coupling, key factors in
prevention of sudden cardiac death. Can. J. Physiol. Pharmacol.
2009; 87: 1120–1129.
19. Chan Y.H., Wu C.T., Yeh Y.H., Kuo CT. Reappraisal of
Luo-Rudy dynamic cell model. Acta Cardiol. Sin. 2010; 26: 69–80.
20. Yukiomi T., Mayumi H., Niels V. et al. Ca2+-related
signaling and protein phosphorylation abnormalities play
central roles in a new experimental model of electrical storm.
Circulation. 2011; 66123: 2192–2203.
21. Sesselberg H.W., Moss A.J., McNitt S. et al. Ventricular
arrhythmia storms in post infarction patients with implantable
defibrillators for primary prevention indications: a MADIT-II
substudy. Heart Rhythm. 2007; 4 (11): 1395–1402.
22. Burjorjee J., Milne B. Propofol for electrical storm;
a case report of cardioversion and suppression of ventricular
tachycardia by propofol. Can. J. Anaesth. 2002; 49: 97.
23. Tsagalou E.P., Kanakakis J., Rokas S., Anastasiou-
Nana M.I. Suppression by propanolol and amiodarone of an
electrical storm refractory o metoprolol and amiodarone. Int. J.
Cardiol. 2005; 99: 341–342.
24. Fuchs T., Groysman R., Meilichov I. Use of a combination
of class III and class Ic antiarrhythmic agents in patients with
electrical storm. Pharmacotherapy. 2008; 28; 1: 14–19.
25. Kavesh N., Olsovsky M., Freudenberger R. et al.
IV Amiodarone suppression of electrical storm refractory to
chronic oral amiodarone. Pacing. Clin. Electrophysiol. 1999;
22: 665–667.
26. Schreieck J., Zrenner B., Deisenhofer I., Schmitt C.
Rescue ablation of electrical storm in patients with ischemic
cardiomyopathy: a potential-guided ablation approach by
modifying substrate of intractable, unmappable ventricular
tachycardias. Heart Rhythm. 2005; 2: 10–14.
27. Bänsch D., Oyang F., Antz M. et al. Successful
catheter ablation of electrical storm after myocardial infarction.
Circulation. 2003; 108: 3011–3016.
28. Kolettis T.M., Naka K.K., Katsouras C.S.
Radiofrequency catheter ablation for electrical storm in a
patient with dilated cardiomyopathy. Hellenic. J. Cardiol.
2005; 46: 366–369.
29. Carbucicchio C., Santamaria M., Trevisi N. et al.
Catheter ablation for the treatment of electrical storm in patients
with implantable cardioverter-defibrillators: short- and longterm
outcomes in a prospective single-center study. Circulation.
2008; 117: 462–469.
30. Tanner H., Hindricks G., Volkmer M. et al. Catheter
ablation of recurrent scar-related ventricular tachycardia using
electroanatomical mapping and irrigated ablation technology:
results of the prospective multicenter Euro-VT-Study. J.
Cardiovasc. Electrophysiol. 2010; 21: 47–53.
31. Kurisu S., Inoue I., Kawagoe T. et al. Temporary
overdrive pacing as an adjunct to antiarrhythmic drug therapy
for electrical storm in acute myocardial infarction. Circulation.
2005; 69: 613–616.10
32. Braunschweig F., Boriani G., Bauer A. et al.
Management of patients receiving implantable cardiac
defibrillator shocks. Europace. 2010; 12: 1673–1690.
33. Tester D., Ackerman M. Genetics of long QT syndrome.
MDCVJ. 2014; 10 (1): 29–33.
34. Shah M.J., Rhodes L.A. Resolution of Electrical Storms
After Discontinuation of ICD Therapy in a Child with Long QT
Syndrome. Pediatric. Cardiol. 2002; 23 (2): 213–215.
35. Clausen H., Pflaumer A., Kamberi S. Electrical Storm in
Children. Pacing Clin. Electrophysiol. 2013; 36 (3): 391–401.
36. Jervell A., Lange-Nielsen F. Congenital deaf-mutism,
functional heart disease with prolongation of the QT interval,
and sudden death. Am. Heart J. 1957; 54: 59–68.
37. Romano C., Gemme G., Pongiglione R. Artimie
cardiache rare dell‘eta pediatria. Clin. Pediatr. (Phila). 1963;
45: 656–683.
38. Ward O.C. New familial cardiac syndrome in children.
J. Ir. Med. Assoc.1964; 54: 103–106.
39. Schwartz P., Stramba-Badiale M., Crotti L. et al.
Prevalence of the congenital long-qt syndrome. Circulation.
2009; 120 (18): 1761–1767.
40. Roden D.M. Drug-induced prolongation of the QT
Interval. N. Engl. J. Med. 2004; 350: 1013–1022.
41. Schwartz P.J. Idiopathic long QT syndrome: progress
and questions. Am. Heart J. 1985; 109: 399–411.
42. Schwartz P.J., Mos s A.J., Vincent G.M., Crampton R.S.
Diagnostic criteria for the long QT syndrome. Circulation. 1993:
88: 782–784.
43. Schwartz P.J., Crotti L. QTc Behavior During Exercise
and Genetic Testing for the Long-QT Syndrome. Circulation.
2011; 124: 2181–2184.
44. Khan I.A. Clinical and Therapeutic Aspects of
Congenital and Acquired Long QT Syndrome. Am. J. Med.
2002; 112: 58–66.
45. Kass R.S., Moss A.J. Long QT syndrome: novel insights
into the mechanisms of cardiac arrhythmias. J. Clin. Invest.
2003; 112: 810–815.
46. Snyders D.J. Structure and function of cardiac potassium
channels. Cardiovas. Res. 1999; 42: 377–390.
47. Vatta M., Li H., Towbin J.A. Molecular biology of
arrhythmic syndromes. Curr. Opin. Cardiol. 2000; 15: 12–
22.
48. Gima K., Rudy Y. Ionic current basis of electrocardiographic
waveforms: a model study. Circ. Res. 2002; 90: 889–896.
49. Schwartz P., Crotti L., Insolia R. Long QT Syndrome:
From Genetics to Management. Circ. Arrhythm. Electrophysiol.
2012; 5 (4): 868–877.
50. Schwartz P.J., Ackerman M.J., Wilde A. Impact of
Genetics on the Clinical Management of Channelopathies. J.
Am. Coll. Cardiol. 2013; 62 (3): 169–180.
51. Zhang L., Timothy K.W., Vincent G.M. et al. The
spectrum of ST-T wave patterns and repolarization parameters
in congenital long QT syndrome: ECG findings identify genotype.
Circulation. 2000; 102: 2849–2855.
52. Wollnik B., Schreeder B.C., Kubish C. et al.
Pathophysiological mechanisms of dominant and recessive
KVLQTI K+ channel mutations found in inherited cardiac
arrhythmias. Hum. Mol. Genet. 1997; 6: 1943–1949.
53. Lee M. P., Hu R. J., Johnson L. A. et al. Human
KvLQT1 gene shows tissue-specific imprinting and encompausses
Beckwith-Wiedemann syndrome chromosomal rearrangements.
Nature Genet. 1997; 15: 181–185.
54. Neyroud N., Tesson F., Denjoy I. et al. A novel mutation
in the potassium channel gene KvLQT1 causes the Jervell and
Lange-Nielsen cardioauditory syndrome. Nature Genet. 1997;
15: 186–189.
55. Haack B., Kupka S., Ebauer M. et al. Analysis of
candidate genes for genotypic diagnosis in the long QT syndrome.
J.Appl. Genet. 2004; 45: 375–381.
56. Piippo K., Swan H., Pasternack M. et al. A founder
mutation of the potassium channel KCNQ1 in long QT
syndrome: implication for estimation of disease prevalence
and molecular diagnostics. J. Am. Coll. Cardiol. 2001; 37:
562–568.
57. Splawski I., Shen J., Timothy K.W. et al. Spectrum
of Mutations in Long-QT Syndrome Genes KVLQT1, HERG,
SCN5A, KCNE1, and KCNE2. Circulation. 2000; 102: 1178–
1185.
58. Donger C., Denjoy I., Berthet M. et al. KVLQT1 CTerminal
Missense Mutation Causes a Forme Fruste Long-QT
Syndrome Circulation. 1997; 96: 2778–2781.
59. Shimizu W., Horie M., Ohno S. et al. Mutation
site-specific differences in arrhythmic risk and sensitivity to
sympathetic stimulation in the LQT1 form of congenital long
QT syndrome: multicenter study in Japan. J. Am. Coll. Cardiol
2004; 44: 117–125.
60. Sanguinetti M.C. Long QT syndrome: ionic basis
and arrhythmia mechanism in long QT syndrome type 1. J.
Cardiovasc. Electrophysiol. 2000; 11: 710–712.
61. Priori S.G., Schwartz P.J., Napolitano C. et al.
Recessive Variant of the Romano-Ward Long-QT Syndrome?
Circulation. 1998; 97: 2420–2425.
62. Warmke J.E., Ganetzky B. A family of potassium
channel gene related to eag in Drosophila and mammals. Proct.
Acad. Sci. USA. 1994; 91: 3438–3442.
63. January C.T., Gong Q., Zhou Z. Long-QT syndrome:
cellular basis and arrhythmia mechanism in LQT2. J.
Cardiovasc. Electrophysiol. 2000; 11: 1413–1418.
64. Wang Q., Shen J., Splawski I. et al. SCN5A mutations
associated with an inherited cardiac arrhythmia, long-QT
syndrome. Cell. 1995; 80: 805–811.
65. Abriel H., Wehrens X.H., Benhorin J. et al. Molecular
pharmacology of the sodium channel mutation D1790G linked
to the long-QT syndrome. Circulation. 2000; 102: 921–925.
66. Wehrens X.H., Vos M.A., Doevendans P.A., Wellens
H.J. Novel Insights in the Congenital Long QT Syndrome. Ann.
Intern. Med. 2002; 137: 981–993.
67. Shimizu W., Antzelevitch C. Cellular basis for long QT,
transmural dispersion of repolarization and torsade de pointes in
the long QT syndrome. J. Electrocardiol. 1999; 32: 177–184.
68. Priori S.G., Schwartz P.J., Napolitano C. et al. Risk
Stratification in the Long-QT Syndrome. N. Engl. J. Med.
2003; 348: 1866–1874.
69. Extramiana F., Maison-Blanche P., Denjoy I. et al.
Gene-Specific Effect of Beta-Adrenergic Blockade on Corrected
QT Interval in the Long QT Syndrome. Ann. Noninvasive
Electrocardiol. 2013; 18 (4): 399–408.
70. Shimizu W., Kurita T., Matsuo K. et al. Improvement of
repolarization abnormalities by K+ channel opener in the LQT1
form of congenital long-QT syndrome. Circulation. 1998; 97:
1581–1588.