ПЕРИВАСКУЛЯРНАЯ ЖИРОВАЯ ТКАНЬ И МЕТОДЫ ЕЕ НЕИНВАЗИВНОЙ ОЦЕНКИ
А. Н. Коков
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово
Н. К. Брель
В. Л. Масенко
Ю. А. Дылева
О. В. Груздева
PDF

Ключевые слова

периваскулярная жировая ткань
мультиспиральная компьютерная томография
магнитно-резонансная томография

Как цитировать

Коков А. Н., Брель Н. К., Масенко В. Л., Дылева Ю. А., Груздева О. В. ПЕРИВАСКУЛЯРНАЯ ЖИРОВАЯ ТКАНЬ И МЕТОДЫ ЕЕ НЕИНВАЗИВНОЙ ОЦЕНКИ // Кремлевская медицина. Клинический вестник. 2020. Т. № 3. С. 115-122.
PDF

Аннотация

Данные значительного количества исследований подтверждают негативное влияние висцерального ожирения как компонента метаболического синдрома на сердечно-сосудистый риск. Наряду с прочими локальными депо висцеральной жировой ткани внимание исследователей привлекает ее периваскулярный компартмент с позиции влияния на кардиометаболический риск. Данный обзор посвящен изучению свойств периваскулярной жировой ткани и оказываемых ею эффектов. Периваскулярная жировая ткань непосредственно воздействует на сосудистую стенку, являясь одним из факторов риска развития и прогрессирования сердечно-сосудистых заболеваний. В норме эффекты периваскулярной жировой ткани направлены на поддержание нормальных гемодинамических и метаболических процессов в стенках кровеносных сосудов. Однако в патофизиологических условиях возрастает продукция вазоактивных веществ, ведущих к структурным изменениям сосудистой стенки и, как следствие, прогрессированию сердечно-сосудистых заболеваний. Использование современных методов неинвазивной оценки периваскулярной жировой ткани предоставляет возможность комплексного анализа жировой ткани данной локализации как звена патогенеза сердечно-сосудистых заболеваний. Вместе с тем отсутствие нормативных значений и единого алгоритма количественной оценки эктопических жировых депо ставит новые задачи перед исследователями.
PDF

Литература

1. Trujillo M. E., Scherer P. E. Adipose tissue-derived factors: impact on health and disease // Endocrine reviews. – 2006. – V. 27. – №. 7. – P. 762-778.doi:10.1210/er.2006-0033.
2. Henry P. et al. Impaired fasting glucose, blood pressure and cardiovascular disease mortality // Hypertension. – 2002. – V. 40. – №. 4. – P. 458-463. doi: 10.1161/01.hyp.0000032853.95690.26
3. Ghazizadeh H. et al. Association between obesity categories with cardiovascular disease and its related risk factors in the MASHAD cohort study population // Journal of Clinical Laboratory Analysis. – 2020. – V. 34. – №. 5. – P. e23160. doi: 10.1002/jcla.23160
4. Britton K. A., Fox C. S. Ectopic fat depots and cardiovascular disease // Circulation. – 2011. – V. 124. – №. 24. – P. e837-e841. doi:10.1161/circulationaha.111.077602
5. Granér M. et al. Ectopic fat depots and left ventricular function in nondiabetic men with nonalcoholic fatty liver disease // Circulation: Cardiovascular Imaging. – 2015. – V. 8. – №. 1. – P. e001979. doi: 10.1161/CIRCIMAGING.114.001979.
6. Lee J. J. et al. Visceral and intrahepatic fat are associated with cardiometabolic risk factors above other ectopic fat depots: the Framingham Heart Study // The American journal of medicine. – 2018. – V. 131. – №. 6. – P. 684-692. e12. doi: 10.1016/j.amjmed.2018.02.002.
7. Gil-Ortega M. et al. Regional differences in perivascular adipose tissue impacting vascular homeostasis // Trends in Endocrinology & Metabolism. – 2015. – V. 26. – №. 7. – P. 367-375. doi:10.1016/j.tem.2015.04.003.
8. Nattenmueller J. et al. CT-based compartmental quantification of adipose tissue versus body metrics in colorectal cancer patients // European radiology. – 2016. – V. 26. – №. 11. – P. 4131-4140. doi: 10.1007/s00330-016-4231-8
9. Kuipers A. L. et al. Association of ectopic fat with abdominal aorto-illiac and coronary artery calcification in african ancestry men // Atherosclerosis. – 2017. – V. 263. – P. 198-204. doi:10.1016/j.atherosclerosis.2017.06.030.
10. Gorter P. M. et al. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography // The American journal of cardiology. – 2008. – V. 102. – №. 4. – P. 380-385. doi: 10.1016/j.amjcard.2008.
11. Siegel-Axel D. I., Häring H. U. Perivascular adipose tissue: a unique fat compartment relevant for the cardiometabolic syndrome // Reviews in Endocrine and Metabolic Disorders. – 2016. – V. 17. – №. 1. – P. 51-60. doi:10.1007/s11154-016-9346-3.
12. Almabrouk T. A. M. et al. Perivascular fat, AMP‐activated protein kinase and vascular diseases // British Journal of Pharmacology. – 2014. – V. 171. – №. 3. – P. 595-617. doi:10.1111/bph.12479.
13. Szasz T., Webb R. C. Perivascular adipose tissue: more than just structural support // Clinical science. – 2012. – V. 122. – №. 1. – P. 1-12. doi:10.1042/CS20110151.
14. Padilla J. et al. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues // American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. – 2013. – V. 304. – №. 7. – P. R543-R552. doi:10.1152/ajpregu.00567.2012.
15. Payne G. A. et al. Periadventitial adipose tissue impairs coronary endothelial function via PKC-β-dependent phosphorylation of nitric oxide synthase // American Journal of Physiology-Heart and Circulatory Physiology. – 2009. – V. 297. – №. 1. – P. H460 - H465. doi:10.1152/ajpheart.00116.2009.
16. Contreras G. A. et al. Periparturient lipolysis and oxylipid biosynthesis in bovine adipose tissues // PloS one. – 2017. – V. 12. – №. 12. – P. e0188621. doi:10.1371/journal.pone.0188621.
17. Gálvez-Prieto B. et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue // Journal of Endocrinology. – 2008. – V. 197. – №. 1. – P. 55-64. doi:10.1677/JOE-07-0284.
18. Lian X., Gollasch M. A clinical perspective: contribution of dysfunctional perivascular adipose tissue (PVAT) to cardiovascular risk // Current hypertension reports. – 2016. – V. 18. – №. 11. – P. 82. doi:10.1007/s11906-016-0692-z.
19.Matthias A. et al. Characterization of perfused periaortic brown adipose tissue from the rat // Canadian journal of physiology and pharmacology. – 1994. – V. 72. – №. 4. – P. 344-352.
20. Bełtowski J. et al. Hydrogen-sulfide-mediated vasodilatory effect of nucleoside 5′-monophosphorothioates in perivascular adipose tissue // Canadian journal of physiology and pharmacology. – 2015. – V. 93. – №. 7. – P. 585-595. doi:10.1139/cjpp-2014-0543.
21. Britton K. A. et al. Prevalence, Distribution, and Risk Factor Correlates of High Thoracic Periaortic Fat in the F ramingham H eart S tudy // Journal of the American Heart Association. – 2012. – V. 1. – №. 6. – P. e004200. doi: 10.1161/JAHA.112.004200.
22. Lehman S. J. et al. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the Framingham Heart Study // Atherosclerosis. – 2010. – V. 210. – №. 2. – P. 656-661. doi:10.1016/j.atherosclerosis.2010.01.007.
23. Fox C. S. et al. Periaortic fat deposition is associated with peripheral arterial disease: the Framingham heart study // Circulation: Cardiovascular Imaging. – 2010. – V. 3. – №. 5. – P. 515-519. doi: 10.1161/CIRCIMAGING.
24.Dias-Neto M. et al. High density of periaortic adipose tissue in abdominal aortic aneurysm // European Journal of Vascular and Endovascular Surgery. – 2018. – V. 56. – №. 5. – P. 663-671. doi:10.1016/j.ejvs.2018.07.008.
25. Iacobellis G. Epicardial adipose tissue in endocrine and metabolic diseases // Endocrine. – 2014. – V. 46. – №. 1. – P. 8-15. doi:10.1007/s12020-013-0099-4.
26. Dey D. et al. Automated quantitation of pericardiac fat from noncontrast CT // Investigative radiology. – 2008. – V. 43. – №. 2. – P. 145-153. doi: 10.1097/RLI.0b013e31815a054a.
27. Rabkin S. W. Epicardial fat: properties, function and relationship to obesity // Obesity reviews. – 2007. – V. 8. – №. 3. – P. 253-261. doi:10.1111/j.1467-789X.2006.00293.x.
28. Gruzdeva O. et al. Relationships between epicardial adipose tissue thickness and adipo-fibrokine indicator profiles post-myocardial infarction // Cardiovascular diabetology. – 2018. – V. 17. – №. 1. – P. 40. doi: 10.1186/s12933-018-0679-y.
29. Коков А. Н. и др. Количественная оценка висцерального жирового депо у больных ишемической болезнью сердца с использованием современных томографических методик // Комплексные проблемы сердечно-сосудистых заболеваний. – 2017. – Т. 6. – №. 3. [Kokov A.N. et al. Quantitative assessment of visceral adipose depot in patients with ischemic heart disease by using of modern tomographic methods. Complex Issues of Cardiovascular Diseases. – 2017. – V. 6. – №. 3. – P. 113-119. In Russian]. doi: 10.17802/2306-1278-2017-6-3-113-119.
30. Possner M. et al. Quantification of epicardial and intrathoracic fat volume does not provide an added prognostic value as an adjunct to coronary artery calcium score and myocardial perfusion single-photon emission computed tomography // European Heart Journal-Cardiovascular Imaging. – 2016. – V. 17. – №. 8. – P. 885-891. doi:10.1093/ehjci/jev209.
31. Chatterjee T. K. et al. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis // Physiological genomics. – 2013. – V. 45. – №. 16. – P. 697-709. doi:10.1152/physiolgenomics.00042.2013.
32. Gaborit B. et al. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location // Cardiovascular research. – 2015. – V. 108. – №. 1. – P. 62-73. doi:10.1093/cvr/cvv208.
33. Mahabadi A. A. et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study // European heart journal. – 2009. – V. 30. – №. 7. – P. 850-856. doi:10.1093/eurheartj/ehn573.
34. Demircelik M. B. et al. Epicardial adipose tissue and pericoronary fat thickness measured with 64-multidetector computed tomography: potential predictors of the severity of coronary artery disease // Clinics. – 2014. – V. 69. – №. 6. – P. 388-392. doi: 10.6061/clinics/2014(06)04.
35. Fitzgibbons T. P., Czech M. P. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations // Journal of the American Heart Association. – 2014. – V. 3. – №. 2. – P. e000582. doi:10.1161/JAHA.113.000582.
36. Nagano G. et al. Activation of classical brown adipocytes in the adult human perirenal depot is highly correlated with PRDM16–EHMT1 complex expression // PloS one. – 2015. – V. 10. – №. 3. – P. e0122584. doi: 10.1371/journal.pone.0122584.
37. Favre G. et al. Perirenal fat thickness measured with computed tomography is a reliable estimate of perirenal fat mass // PLoS One. – 2017. – V. 12. – №. 4. – P. e0175561. doi: 10.1371/journal.pone.0175561
38. Foster M. C. et al. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study // Hypertension. – 2011. – V. 58. – №. 5. – P. 784-790. doi:10.1161/HYPERTENSIONAHA.111.175315.
39. Murakami Y. et al. Renal sinus fat volume on computed tomography in middle-aged patients at risk for cardiovascular disease and its association with coronary artery calcification // Atherosclerosis. – 2016. – V. 246. – P. 374-381. doi:10.1016/j.atherosclerosis.2015.12.014.
40. Iacobellis G. et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction // Obesity research. – 2003. – V. 11. – №. 2. – P. 304-310. doi:10.1038/oby.2003.45.
41. Machann J. et al. Standardized assessment of whole body adipose tissue topography by MRI // Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. – 2005. – V. 21. – №. 4. – P. 455-462. doi:10.1002/jmri.20292.
42. Reeder S. B. et al. Water–fat separation with IDEAL gradient‐echo imaging // Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. – 2007. – V. 25. – №. 3. – P. 644-652. doi:10.1002/jmri.20831.
43. Hu H. H., Nayak K. S., Goran M. I. Assessment of abdominal adipose tissue and organ fat content by magnetic resonance imaging // obesity reviews. – 2011. – V. 12. – №. 5. – P. e504-e515. doi:10.1111/j.1467-789X.2010.00824.x.
44. Lastra G., Manrique C. Perivascular adipose tissue, inflammation and insulin resistance: link to vascular dysfunction and cardiovascular disease // Hormone molecular biology and clinical investigation. – 2015. – V. 22. – №. 1. – P. 19-26. doi: 10.1515/hmbci-2015-0010
45. Franz D. et al. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction // RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. – Georg Thieme Verlag KG, 2018. – V. 190. – №. 12. – P. 1121-1130. doi: 10.1055/a-0612-8006