ВОПРОСЫ ПРИМЕНЕНИЯ ГЕННО-ИНЖЕНЕРНЫХ ПРЕПАРАТОВ В УСЛОВИЯХ НОВОЙ КОРОНАВИРУСНОЙ ИНФЕКЦИИ COVID-19
Л. С. Круглова
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
Н. О. Переверзина
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
E. А. Шатохина
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
PDF

Ключевые слова

генно-инженерная терапия
COVID-19
синдром цитокинового шторма
ИЛ-6
ФНО
ИЛ-1
ИЛ-18
ИФН

Как цитировать

[1]
Л. С. Круглова, Н. О. Переверзина, и ШатохинаE. А., ВОПРОСЫ ПРИМЕНЕНИЯ ГЕННО-ИНЖЕНЕРНЫХ ПРЕПАРАТОВ В УСЛОВИЯХ НОВОЙ КОРОНАВИРУСНОЙ ИНФЕКЦИИ COVID-19, КМКВ, вып. 2, сс. 36-42, июн. 2020.
PDF

Аннотация

В условиях пандемии актуальным является ряд вопросов, касающихся применения генно-инженерной терапии: во-первых – это тактика ведения пациентов с хроническими заболеваниями, которые получают или являются кандидатами для использования в генно-инженерной терапии (ГИБТ), во-вторых – это данные о синдроме цитокинового шторма, наблюдаемом у пациентов с тяжелыми формами коронавирусной инфекции COVID-19, и целесообразности применения у них ГИБТ.
PDF

Литература

1. Yang X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study // The Lancet Respiratory Medicine. – 2020. doi: 10.1016/S2213-2600(20)30079-5.
2. Augustin M. et al. Recommendations for systemic therapy in persons with psoriasis during the pandemic phase of SARS-COV-2 (corona virus). PsoNet; 2020. URL: https://www.psobesV.de/wp-content/uploads/2020/03/RundschreibenPsoBestPsoNetCoronafinalengl.1.1.pdf
3. Novel coronavirus 2019-nCoV. European Commission; 2019. URL: https://eP.europa.eu/health/coronavirus_en.
4. FDA. Novel coronavirus (2019-nCoV) URL: https://www.fda.gov/emergency-preparedness-and response/mcm-issues/novel-coronavirus-2019-ncov.
5. Wang V. et al. Comorbidities and multi-organ injuries in the treatment of COVID-19 //The LanceV. – 2020. – V. 395. – №. 10228. – P. e52. doi: 10.1016/S0140-6736(20)30558-4.
6. Yang J. et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis //International Journal of Infectious Diseases. – 2020. doi: 10.1016/j.ijid.2020.03.017.
7. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? //The LanceV. Respiratory Medicine. – 2020. doi: 10.1016/S2213-2600(20)30116-8.
8. Hruza G.J. at al. Guidance on the use of biologic agents during COVID-19 outbreak. AAD; 2020. URL: https://assets.ctfassets.net/1ny4yoiyrqia/PicgNuD0IpYd9MSOwab47/023ce3cf6eb82cb304b4ad4a8ef50d56/Biologics_and_COVID-19.pdf
9. Diao B. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19) // Frontiers in Immunology. – 2020. – V. 11. – P. 827. doi: 10.3389/fimmu.2020.00827.
10. Lau S. K. P. et al. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment // Journal of General Virology. – 2013. – V. 94. – №. 12. – P. 2679-2690. doi: 10.1099/vir.0.055533-0.
11. Channappanavar R. et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice // Cell host & microbe. – 2016. – V. 19. – №. 2. – P. 181-193. doi: 10.1016/j.chom.2016.01.007
12. Yang X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study // The Lancet Respiratory Medicine. – 2020. doi: 10.1016/S0140-6736( 20)30183- 5.
13. Yang Y. et al. Exuberant elevation of IP-10 // MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv. – 2020. – V. 2002. – P. 2020. doi: 10.1101/2020.03.02.20029975.
14. Chen L. et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia // Zhonghua jie he he hu xi za zhi= Zhonghua jiehe he huxi zazhi= Chinese journal of tuberculosis and respiratory diseases. – 2020. – V. 43. – P. E005-E005. doi: 10.3760/cma.j.issn.1001-0939.2020.0005.
15. Mehta P. et al. Correspondence COVID-19: consider cytokine storm syndromes and // LanceV. – 2020. – V. 6736. – №. 20. – P. 19-20. doi: 10.1016/S0140-6736(20)30628-0
16. Liu B. et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? // Journal of Autoimmunity. – 2020. – P. 102452. doi: 10.1016/j.jauV.2020.102452
17. Ye Q., Wang B., Mao J. Cytokine Storm in COVID-19 and Treatment // Journal of Infection. – 2020. doi: 10.1016/j.jinf.2020.03.037.
18. Xu X. et al. Effective treatment of severe COVID-19 patients with tocilizumab // Proceedings of the National Academy of Sciences. – 2020. doi: 10.1073/pnas.2005615117
19. Roumier M. et al. Interleukin-6 blockade for severe COVID-19 // Medrxiv. – 2020. doi: 10.1101/2020.04.20.20061861.
20. Bhimraj A. et al. Infectious diseases Society of America guidelines on the treatment and management of patients with COVID-19 // Clinical Infectious Diseases. – 2020. doi: 10.1093/cid/ciaa478.
21. Feldmann M. et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed // The LanceV. – 2020. – V. 395. – №. 10234. – P. 1407-1409. doi: 10.1016/S0140-6736(20)30858-8.
22. Qiu P. et al. Anti-tumor necrosis factor therapy is associated with improved survival in clinical sepsis trials: a meta-analysis // Critical care medicine. – 2013. – V. 41. – №. 10. doi: 10.1097/CCM.0b013e3182982add.
23. McDermott J. E. et al. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus // BMC systems biology. – 2016. – V. 10. – №. 1. – P. 93. doi: 10.1186/s12918-016-0336-6.
24. Taylor P. P. et al. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor α blockade in patients with rheumatoid arthritis // Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. – 2000. – V. 43. – №. 1. – P. 38-47. doi: 10.1002/1529-0131(200001)43:1<38::AID-ANR6>3.0.CO;2-L.
25. Xiong Y. et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients //Emerging Microbes & Infections. – 2020. – V. 9. – №. 1. – P. 761-770. doi: 10.1080/22221751.2020.1747363.
26. Shakoory B. et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of the macrophage activation syndrome: Re-analysis of a prior Phase III trial // Critical care medicine. – 2016. – V. 44. – №. 2. – P. 275. doi: 10.1097/CCM.0000000000001402.
27. Sallard E. et al. Type 1 interferons as a potential treatment against COVID-19 //Antiviral Research. – 2020. – P. 104791. doi: 10.1016/j.antiviral.2020.104791.
28. Lokugamage K. G. et al. SARS-CoV-2 sensitive to type I interferon pretreatment // BioRxiv. – 2020. doi: 10.1101/2020.03.07.982264.
29. Siddiqu H. K., Mehra M. R. COVID-19 Illness in Native and Immunosuppressed States // A Clinical-Therapeutic Staging Proposal. Journal of Heart and Lung Transplantation. – 2020. doi: 10.1016/j.healun.2020.03.012.
30. Shen K. L., Yang Y. H. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. – 2020. doi: 10.1007/s12519-020-00344-6.
31. Huang K. J. et al. An interferon‐γ‐related cytokine storm in SARS patients //Journal of medical virology. – 2005. – V. 75. – №. 2. – P. 185-194. doi: 10.1002/jmv.20255.
32. Wan S. et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) // MedRxiv. – 2020. doi: 10.1101/2020.02.10.20021832.
33. Song P. Y. et al. COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients // MedRxiv. – 2020.DOI: doi:.1101/2020.03.05.20031906.
34. Lagunas‐Rangel F. A., Chávez‐Valencia V. High IL‐6/IFN‐γ ratio could be associated with severe disease in COVID‐19 patients // Journal of Medical Virology. – 2020. doi: 10.1002/jmv.25900.
35. Vallurupalli M., Berliner N. Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis // Blood. – 2019. – V. 134. – №. 21. – P. 1783-1786. doi: 10.1182/blood.2019002289
36. Jamilloux Y. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions // Autoimmunity Reviews. – 2020. – P. 102567. doi: 10.1016/j.autrev.2020.102567.
37. Arabi Y. M. et al. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: a multicenter observational study // Clinical infectious diseases. – 2020. – V. 70. – №. 9. – P. 1837-1844. doi: 10.1093/cid/ciz544.
38. Zumla A. et al. Coronaviruses—drug discovery and therapeutic options // Nature reviews Drug discovery. – 2016. – V. 15. – №. 5. – P. 327. doi: 10.1038/nrd.2015.37.
39. Qin Y. Y. et al. Effectiveness of glucocorticoid therapy in patients with severe coronavirus disease 2019: protocol of a randomized controlled trial // Chinese Medical Journal. – 2020. doi: 10.1097/CM9.0000000000000791.
40. Gao J., Tian Z. Yang X. breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of covId-19 associated pneumonia in clinical studies. Biosci Trends. – 2020. – V. 10. doi: 10.5582/bsV.2020.01047.
41. Jie Z. et al. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia // Zhonghua Jie He He Hu Xi Za Zhi. – 2020. – V. 43. – P. E019. doi: 10.3760/cma.j.issn.1001-0939.2020.03.009.
42. Wang H. et al. Improvement of sepsis prognosis by ulinastatin: A systematic review and meta-analysis of randomized controlled trials // Frontiers in Pharmacology. – 2019. – V. 10. – P. 1370. doi: 10.3389/fphar.2019.01370.
43. Ju M. et al. Ulinastatin ameliorates LPS induced pulmonary inflammation and injury by blocking the MAPK/NF κB signaling pathways in rats // Molecular medicine reports. – 2019. – V. 20. – №. 4. – P. 3347-3354. doi: 10.3892/mmr.2019.10561.
44. Uccelli A., de Rosbo N. K. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways // Annals of the New York Academy of Sciences. – 2015. – V. 1351. – №. 1. – P. 114-126. doi: 10.1111/nyas.12815.
45. Ben-Mordechai V. et al. Targeting macrophage subsets for infarct repair // Journal of cardiovascular pharmacology and therapeutics. – 2015. – V. 20. – №. 1. – P. 36-51. doi: 10.1177/1074248414534916.