НОВАЯ КОРОНАВИРУСНАЯ ИНФЕКЦИЯ - COVID-19. ВОПРОСЫ ПРОИСХОЖДЕНИЯ, ТРОПНОСТИ ВОЗБУДИТЕЛЯ, ПУТЕЙ ПЕРЕДАЧИ ИНФЕКЦИИ, ЛАБОРАТОРНОЙ ДИАГНОСТИКИ И СПЕЦИФИЧЕСКОЙ ТЕРАПИИ
А. В. Девяткин
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
А. А. Девяткин
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава, Москва
PDF

Ключевые слова

COVID–19
коронавирусная инфекция
пандемия

Как цитировать

[1]
.
PDF

Аннотация

Начавшаяся в конце 2019 г. вспышка COVID-19 является беспрецедентным по масштабам и последствиям событием в новейшей истории человечества. На 27 мая 2020 г. во всем мире официально зарегистрировано 5 618 829 случаев заражения человека SARS-CoV-2 и 351 146 случаев гибели в результате развития инфекции по данным коронавирусного ресурсного центра университета Джона Хопкинза. В базе данных публикаций PubMed 16490 работ содержат в своем названии «COVID-19». Благодаря современным информационным технологиям данные о распространении и клиническом течении COVID-19 становятся общедоступными практически в режиме реального времени. В то же время детали происхождения возбудителя, тропности вируса, способы распространения инфекции, методы лабораторной диагностики и возможные подходы к специфической терапии остаются предметом активного дальнейшего изучения. В данном обзоре представлен анализ актуальной литературы, описывающей поставленные вопросы.
PDF

Литература

1. World Health Organization (WHO). Novel Coronavirus (2019-nCoV) Situation Report - 1 21 January 2020 // WHO Bull. 2020. №. JANUARY. P. 1–8.
2. Chan J.F.W. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster // Lancet. – 2020. – V. 395. – №. 10223. –P. 514–523. doi: 10.1016/S0140-6736(20)30154-9.
3. Corman V.M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR // Eurosurveillance. – 2020. – V. 25. – №. 3. – P. 1–8. doi: 10.2807/1560-7917.ES.2020.25.3.2000045.
4. World Health Organization (WHO). Novel Coronavirus (2019-nCoV ) Situation Report - 22 11 February 2020 // WHO Bull. 2020. №. February. P. 1–7.
5. Gorbalenya A.E. et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 // Nat. Microbiol. – 2020. – V. 5. – №. 4. – P. 536–544. doi: 10.1038/s41564-020-0695-z.
6. World Health Organization (WHO). Coronavirus (COVID-19) Situation Report - 51 11 March 2020 // WHO Bull. 2020. P. 1–9.
7. Bukhari K. et al. Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus // Virology. – 2018. V. 524. – P. 160–171. doi: 10.1016/j.virol.2018.08.010.
8. Su S. et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses // Trends Microbiol. – 2016. – V. 24. – №. 6. – P. 490–502. doi: 10.1016/j.tim.2016.03.003.
9. Cui J., Li F., Shi Z.-L. Origin and evolution of pathogenic coronaviruses // Nat. Rev. Microbiol. – 2019. –V. 17. – №. 3. – P. 181–192. doi: 10.1038/s41579-018-0118-9.
10. Anderson R.M. et al. Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic // Philos. Trans. R. Soc. London. Ser. B Biol. Sci. / ed. May R.M. et al. – 2004. – V. 359. – №. 1447. – P. 1091–1105. doi: 10.1098/rstb.2004.1490.
11. The WHO MERS-CoV Research Group -. State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans // PLoS Curr. – 2013. – V. 5. – P. 1–18. doi: 10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8
12. Zumla A., Hui D.S., Perlman S. Middle East respiratory syndrome // Lancet. –2015. V. 386. – №. 9997. – P. 995–1007. doi: 10.1016/S0140-6736(15)60454-8
13. Cho S.Y. et al. MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study // Lancet. – 2016. – V. 388. – №. 10048. – P. 994–1001. doi: 10.1016/S0140-6736(16)30623-7.
14. Oh M.D. et al. Middle east respiratory syndrome: What we learned from the 2015 outbreak in the republic of Korea // Korean J. Intern. Med. – 2018. – V. 33. – №. 2. – P. 233–246. doi: 10.3904/kjim.2018.031.
15. Andersen K.G. et al. The Proximal Origin of SARS-CoV-2 // Virological. – 2020. – №. 2. – P. 1–7. doi: 10.2106/JBJS.F.00094.
16. Zhou P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. – 2020. – V. 579. – №. 7798. – P. 270–273. doi: 10.1038/s41586-020-2012-7.
17. Normile D. Novel human virus? Pneumonia cases linked to seafood market in China stir concern. .https://www.sciencemag.org/news/2020/01/novel-human-virus-pneumonia-cases-linked-seafood-market-china-stir-concern
18. Hoffmann M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor // Cell. – 2020. – V. 181. – №. 2. – P. 271-280.e8. doi: 10.1016/j.cell.2020.02.052.
19. South A.M., Diz D.I., Chappell M.C. COVID-19, ACE2, and the cardiovascular consequences // Am. J. Physiol. Heart Circ. Physiol. – 2020. – V. 318. – №. 5. – P. H1084–H1090. doi: 10.1152/ajpheart.00217.2020.
20. Kuster G.M. et al. SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19? // Eur. Heart J. – 2020. – P. 1–3. doi: 10.1093/eurheartj/ehaa235.
21. Hamming I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis // J. Pathol. – 2004. – V. 203. – №. 2. – P. 631–637. doi: 10.1002/path.1570.
22. Xu H. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa // Int. J. Oral Sci. – 2020. – V. 12. – №. 1. – P. 1–5. doi: 10.1038/s41368-020-0074-x.
23. Zhang H. et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target // Intensive Care Med. – 2020. – V. 46. – №. 4. – P. 586–590. doi: 10.1007/s00134-020-05985-9.
24. Douglas G.C. et al. The novel Angiotensin-Converting Enzyme (ACE) homolog, ACE2, is selectively expressed by adult leydig cells of the testis // Endocrinology. – 2004. – V. 145. – №. 10. – P. 4703–4711. doi: 10.1210/en.2004-0443.
25. Chen L. et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2 // Cardiovasc. Res. – 2020. – P. 1097–1100. doi: 10.1093/cvr/cvaa078.
26. Uhlen M. et al. Tissue-based map of the human proteome // Science. – 2015. – V. 347. – №. 6220. – P. 1260419–1260419. doi: 10.1126/science.1260419.
27. Chen J., Subbarao K. The Immunobiology of SARS // Annu. Rev. Immunol. – 2007. – V. 25. – №. 1. – P. 443–472. doi: 10.1146/annurev.immunol.25.022106.141706.
28. Huang C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. – 2020. – V. 395. – №. 10223. – P. 497–506. doi: 10.1016/S0140-6736(20)30183-5.
29. Chen N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // Lancet. Elsevier Ltd. – 2020. – V. 395 – №. 10223. – P. 507–513. doi: 10.1016/S0140-6736(20)30211-7.
30. Puelles V.G. et al. Multiorgan and Renal Tropism of SARS-CoV-2 // N. Engl. J. Med. – 2020. – V. 367. – №. 22. – P. NEJMc2011400. doi: 10.1056/NEJMc2011400.
31. World Health Organization (WHO). Q&A on coronaviruses (COVID-19). WHO; 2020. URL: http://www.emro.who.int/health-topics/corona-virus/questions-and-answers.html.
32. Centers for Disease Control and Prevention (CDC). How COVID-19 Spreads. CDC; 2020. URL: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html.
33. Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19 // JAMA. – 2020. – P. E1–E2. doi: 10.1001/jama.2020.4756.
34. van Doremalen N. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1 // N. Engl. J. Med. – 2020. – V. 382. – №. 16. – P. 1564–1567. doi: 10.1056/NEJMc2004973.
35. Wölfel R. et al. Virological assessment of hospitalized patients with COVID-2019 // Nature. – 2020. – P. 1–14. doi: 10.1038/s41586-020-2196-x.
36. Xu Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding // Nat. Med. 2020. – V. 26. – №. 4. – P. 502–505. doi: 10.1038/s41591-020-0817-4.
37. Wang W. et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens // JAMA. – 2020. – P. 3–4. doi: 10.1001/jama.2020.3786.
38. Lodder W., de Roda Husman A.M. SARS-CoV-2 in wastewater: potential health risk, but also data source // lancet. Gastroenterol. Hepatol. – 2020. – V. 1253. – №. 20. – P. 30087. doi: 10.1016/S2468-1253(20)30087-X.
39. Sethuraman N., Jeremiah S.S., Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2 // JAMA. – 2020. – V. 2019. – P. 2019–2021. doi: 10.1001/jama.2020.8259.
40. Böhmer M.M. et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series // Lancet Infect. Dis. – 2020. – V. 3099. – №. 20. doi: 10.1016/S1473-3099(20)30314-5.
41. Peiris J. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study // Lancet. – 2003. – V. 361. – №. 9371. – P. 1767–1772. doi: 10.1016/S0140-6736(03)13412-5.
42. Jacofsky D., Jacofsky E.M., Jacofsky M. Understanding Antibody Testing for COVID-19 // J. Arthroplasty. – 2020. doi: 10.1016/j.arth.2020.04.055.
43. Long Q. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19 // Nat. Med. – 2020. doi: 10.1038/s41591-020-0897-1.
44. COVID-19 Vaccine & Therapeutics Tracker. BioRender; 2020. URL: https://biorender.com/covid-vaccine-tracker.
45. Thanh Le T. et al. The COVID-19 vaccine development landscape // Nat. Rev. Drug Discov. Springer US. – 2020. – V. 19. – №. 5. – P. 305–306. doi: 10.1038/d41573-020-00073-5.
46. Pronker E.S. et al. Risk in Vaccine Research and Development Quantified // PLoS One / ed. Vasilakis N. – 2013. – V. 8. – №. 3. – P. e57755. doi: 10.1371/journal.pone.0057755.
47. Wang Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial // Lancet. Elsevier Ltd. – 2020. –. P. 1569–1578. doi: 10.1016/S0140-6736(20)31022-9.
48. Goldhill D.H. et al. The mechanism of resistance to favipiravir in influenza // Proc. Natl. Acad. Sci. U. S. A. – 2018. – V. 115. – №. 45. – P. 11613–11618. doi: 10.1073/pnas.1811345115.
49. Elfiky A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study // Life Sci. 2020. – V. 253. – P. 117592. doi: 10.1016/j.lfs.2020.117592.
50. Chary M.A. et al. COVID-19: Therapeutics and Their Toxicities // J. Med. Toxicol. Journal of Medical Toxicology. – 2020. –. P. 1–11. doi: 10.1007/s13181-020-00777-5.
51. Cao B. et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19 // N. Engl. J. Med. 2020. – V. 382. – №. .19. – P. 1787–1799. doi: 10.1056/NEJMoa2001282.
52. Liu J. et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro // Cell Discov. 2020. – V. 6. – P. 6–9. doi: 10.1038/s41421-020-0156-0.
53. Mehra M.R. et al. Articles Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis // Lancet. Elsevier Ltd. – 2020. – V. 6736(20). – P. 1–10. doi: 10.1016/S0140-6736(20)31180-6.
54. Uno Y. Camostat mesilate therapy for COVID-19 // Intern. Emerg. Med. Springer International Publishing. – 2020. – P. 1–2. doi: 10.1007/s11739-020-02345-9.
55. Ou X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV // Nat. Commun. Springer US. – 2020. – V. 11. – P. 1620. doi: 10.1038/s41467-020-15562-9.
56. Shang J. et al. Cell entry mechanisms of SARS-CoV-2 // Proc. Natl. Acad. Sci. – 2020. – V. 2020. – P. 202003138. doi: 10.1073/pnas.2003138117.
57. Hung I.F. et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial // Lancet. Elsevier Ltd. – 2020. – V. 6736. – P. 1–10. doi: 10.1016/S0140-6736(20)31042-4.
58. Ziegler C.G.K. et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues // Cell. – 2020. – P. 1–20. doi: 10.1016/j.cell.2020.04.035.
59. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19 // J. Infect. Elsevier Ltd. – 2020. – V. 80. – P. 607–613. doi: 10.1016/j.jinf.2020.03.037.
60. Meduri G.U. et al. Inflammatory Cytokines in the BAL of Patients With ARDS // Chest. – 1995. – V. 108. – P. 1303–1314. doi: 10.1378/chest.108.5.1303.
61. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology // Semin. Immunopathol. Seminars in Immunopathology. – 2017. – V. 39. – P. 529–539. doi: 10.1007/s00281-017-0629-x.
62. Deviatkin A.A. et al. Emerging Concepts and Challenges in Rheumatoid Arthritis Gene Therapy // Biomedicines. – 2020. – V. 8. – P. 9. doi: 10.3390/biomedicines8010009.
63. Moore B.J.B., June C.H. Cytokine release syndrome in severe COVID-19 // Science. – 2020. – P. eabb8925. doi: 10.1126/science.abb8925
64. Feldmann M. et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed // Lancet. – 2020. – V. 395 – P. 1407–1409. doi: 10.1016/S0140-6736(20)30858-8.
65. Xu X. et al. Effective treatment of severe COVID-19 patients with tocilizumab // Proc. Natl. Acad. Sci. – 2020. – V. 117(20). – P. 10970–10975. doi: 10.1073/pnas.2005615117.
66. Michot J.-M. et al. Tocilizumab, an anti-IL6 receptor antibody, to treat Covid-19-related respiratory failure: a case report // Ann. Oncol. European Society for Medical Oncology. – 2020. doi: 10.1016/j.annonc.2020.03.300.
67. Jose R.J., Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation // Lancet Respir. Med. – 2020. – P. 19–20. doi: 10.1016/S2213-2600(20)30216-2.
68. Levi M. et al. Coagulation abnormalities and thrombosis in patients with COVID-19 // Lancet Haematol. – 2020. – V. 20. – P. 2019–2021. doi: 10.1016/S2352-3026(20)30145-9.