Легочная артериальная гипертензия: течение и прогноз заболевания. Обзор литературы
Д. А. Затейщиков
ГБУЗ «Городская клиническая больница №51» Департамента здравоохранения г. Москвы
Н. Б. Осипова
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ, Москва
PDF

Ключевые слова

легочная артериальная гипер тензия
факторы риска
прогноз

Как цитировать

Затейщиков, Д. А., & Осипова, Н. Б. (2018). Легочная артериальная гипертензия: течение и прогноз заболевания. Обзор литературы. КРЕМЛЕВСКАЯ МЕДИЦИНА<br><i>клинический вестник</I&gt;, (4), 81-86. извлечено от http://kremlin-medicine.ru/index.php/km/article/view/1317
PDF

Аннотация

Легочная гипертензия, как и «обычная» артериальная гипертония, может быть как самостоятельным, в том числе генетически обусловленным, заболеванием, так и осложнением значительного числа других болезней. Наибольшее число исследований в настоящее время посвящено легочной артериальной гипертензии (ЛАГ), для которой разработано лечение, улучшающее течение. В настоящем обзоре описываются подходы к прогнозированию течения ЛАГ на основе клинических данных, данных функциональных методов обследования, регистрации биомаркеров и генетических данных.
PDF

Литература

1. Galiè N., Humbert M., Vachiery J.-L. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart. Journal. 2016; 37(1): 67-119, /https://doi.org/10.1093/ eurheartj/ehv317.
2. Weatherald J., Boucly A., Chemla D. S. et al. Prognostic Value of Follow-Up Hemodynamic Variables After Initial Management in Pulmonary Arterial Hypertension. Circulation. 2018; 137(7): 693-704, /https://doi.org/10.1161/CIRCULATIONAHA.117.029254.
3. Zelniker T.A., Huscher D., Vonk-Noordegraaf A. et al. The 6MWT as a prognostic tool in pulmonary arterial hypertension: results from the COMPERA registry. Clin. Res. Cardiol. 2018; 107(6): 460-470, /https://doi.org/10.1007/s00392-018-1207-5.
4. Tang Y., Yao L., Liu Z. et al. Peak circulatory power is a strong prognostic factor in patients with idiopathic pulmonary arterial hypertension. Respir. Med. 2018; 135: 29-34, /https://doi.org/10.1016/j. rmed.2018.01.003.
5. Fares W.H., Bellumkonda L., Tonelli A.R. et al. Right atrial pressure/pulmonary artery wedge pressure ratio: A more specific predictor of survival in pulmonary arterial hypertension. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2016; 35(6): 760-767, /https://doi. org/10.1016/j.healun.2015.12.028.
6. Chen L., Larsen C.M., Le R.J. et al. The prognostic significance of tricuspid valve regurgitation in pulmonary arterial hypertension. Сlin. Resp. J. 2018; 12(4): 1572-1580, /https://doi.org/10.1111/crj.12713.
7. Austin C., Burger C., Kane G. et al. High-risk echocardiographic features predict mortality in pulmonary arterial hypertension. Am. Heart J. 2017; 189: 167-176, /https://doi.org/10.1016/j.ahj.2017.04.013.
8. Hoette S., Creuze N., Gunther S. et al. RV Fractional Area Change and TAPSE as Predictors of Severe Right Ventricular Dysfunction in Pulmonary Hypertension: A CMR Study. Lung. 2018; 196(2): 157-164, /https://doi.org/10.1007/s00408-018-0089-7.
9. Hopper R.K., Wang Y., DeMatteo V. et al. Right ventricular function mirrors clinical improvement with use of prostacyclin analogues in pediatric pulmonary hypertension. Pulm. Circ. 2018; 8(2): 2045894018759247, /https://doi.org/10.1177/2045894018759247.
10. Whitaker M.E., Nair V., Sinari S. et al. Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension. Am. J. Med. 2018; 131(6): 702 e707- 702 e713, /https://doi.org/10.1016/j.amjmed.2017.12.046.
11. Brown S.B., Raina A., Katz D. et al. Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest. 2011; 140(1): 27-33, /https:// doi.org/10.1378/chest.10-1136.
12. Badagliacca R., Poscia R., Pezzuto B. et al. Prognostic relevance of right heart reverse remodeling in idiopathic pulmonary arterial hypertension. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 2017, /https://doi.org/10.1016/j.healun.2017.09.026.
13. Moceri P., Duchateau N., Baudouy D. et al. Three dimensional right-ventricular regional deformation and survival in pulmonary hypertension. Eur. Heart. J. Cardiovasc. Imaging. 2018; 19(4): 450-458, /https://doi.org/10.1093/ehjci/jex163.
14. Frantz R.P., Farber H.W., Badesch D.B. et al. Baseline and Serial Brain Natriuretic Peptide Level Predicts 5-Year Overall Survival in Patients With Pulmonary Arterial Hypertension: Data From the REVEAL Registry. Chest. 2018; 154(1): 126-135, /https://doi. org/10.1016/j.chest.2018.01.009.
15. Sargento L., Longo S., Lousada N. et al. Nt-ProBNP, Anaemia and Renal function are independent predictors of hospitalization in outpatients with pulmonary artery hypertension. Rev. Port. Pneumol (2006). 2015; 21(1): 46-47, /https://doi.org/10.1016/j.rppnen.2014.09.004.
16. Soon E., Doughty N.J., Treacy C.M. et al. Log-transformation improves the prognostic value of serial NT-proBNP levels in apparently stable pulmonary arterial hypertension. Pulm. Circ. 2011; 1(2): 244- 249, /https://doi.org/10.4103/2045-8932.83450.
17. Placido R., Cortez-Dias N., Robalo Martins S. et al. Prognostic stratification in pulmonary hypertension: A multi-biomarker approach. Rev. Port. Cardiol. 2017; 36(2): 111-125, /https://doi.org/10.1016/j. repc.2016.08.005.
18. Snipelisky D., Jentzer J., Batal O. et al. Serum albumin concentration as an independent prognostic indicator in patients with pulmonary arterial hypertension. Clin. Cardiol. 2018; 41(6): 782-787, /https://doi.org/10.1002/clc.22954. 19. Bitker L., Sens F., Payet C. et al. Presence of Kidney Disease as an Outcome Predictor in Patients with Pulmonary Arterial Hypertension. Am. J. Nephrol. 2018; 47(2): 134-143, /https://doi. org/10.1159/000487198.
20. Gall H., Felix J.F., Schneck F.K. et al. The Giessen Pulmonary Hypertension Registry: Survival in pulmonary hypertension subgroups. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2017; 36(9): 957- 967, /https://doi.org/10.1016/j.healun.2017.02.016.
21. Benza R.L., Gomberg-Maitland M., Miller D.P. et al. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012; 141(2): 354-362, / https://doi.org/10.1378/chest.11-0676.
22. Sithamparanathan S., Nair A., Thirugnanasothy L. et al. Survival in portopulmonary hypertension: Outcomes of the United Kingdom National Pulmonary Arterial Hypertension Registry. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2017; 36(7): 770-779, /https://doi.org/10.1016/j.healun.2016.12.014.
23. Manders E., Bonta P.I., Kloek J.J. et al. Reduced force of diaphragm muscle fibers in patients with chronic thromboembolic pulmonary hypertension. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2016; 311(1): L20-28, /https://doi.org/10.1152/ajplung.00113.2016.
24. Robalino B.D., Moodie D.S.: Association between primary pulmonary hypertension and portal hypertension: analysis of its pathophysiology and clinical, laboratory and hemodynamic manifestations. J. Am. Coll. Cardiol. 1991; 17(2): 492-498.
25. Assaggaf H., Felty Q.: Gender, Estrogen, and Obliterative Lesions in the Lung. Int. J. Endocrinol. 2017; 2017: 8475701, /https:// doi.org/10.1155/2017/8475701.
26. Wijeratne D.T., Lajkosz K., Brogly S.B. et al. Increasing Incidence and Prevalence of World Health Organization Groups 1 to 4 Pulmonary Hypertension: A Population-Based Cohort Study in Ontario, Canada. Circ. Cardiovasc. Qual. Outcomes. 2018; 11(2): e003973, / https://doi.org/10.1161/CIRCOUTCOMES.117.003973.
27. Evans J.D., Girerd B., Montani D. et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. The lancet Respiratory medicine. 2016; 4(2): 129- 137, /https://doi.org/10.1016/S2213-2600(15)00544-5.
28. Treacy C.M., Buasso D.T., Doughty N. et al. P139 Survival of Idiopathic Pulmonary Arterial Hypertension BMPR2 Mutation Carriers Vs BMPR2 Non Carriers. Thorax. 2012; 67(Suppl 2): A122.121-A122, /https://doi.org/10.1136/thoraxjnl-2012-202678.422.
29. Morrisroe K., Stevens W., Huq M. et al. Survival and quality of life in incident systemic sclerosis-related pulmonary arterial hypertension. Arthritis. Res. Ther. 2017; 19(1): 122, /https://doi.org/10.1186/s13075- 017-1341-x. 30. Kawut S.M., Horn E.M., Berekashvili K.K. et al. New predictors of outcome in idiopathic pulmonary arterial hypertension. Am. J. Сardiol. 2005; 95(2): 199-203, /https://doi.org/10.1016/j. amjcard.2004.09.006.
31. Elliott C.G., Glissmeyer E.W., Havlena G.T. et al. Relationship of BMPR2 Mutations to Vasoreactivity in Pulmonary Arterial Hypertension. Circulation. 2006; 113(21): 2509-2515, /https://doi. org/10.1161/circulationaha.105.601930.
32. van der Bruggen C.E., Happe C.M., Dorfmuller P. et al. Bone Morphogenetic Protein Receptor Type 2 Mutation in Pulmonary Arterial Hypertension: A View on the Right Ventricle. Circulation. 2016; 133(18): 1747-1760, /https://doi.org/10.1161/ CIRCULATIONAHA.115.020696.
33. Pfarr N., Fischer C., Ehlken N. et al. Hemodynamic and genetic analysis in children with idiopathic, heritable, and congenital heart disease associated pulmonary arterial hypertension. Respir. Res. 2013; 14: 3, /https://doi.org/10.1186/1465-9921-14-3.
34. Leopold J.A., Maron B.A.: Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. International journal of molecular sciences. 2016; 17(5), /https://doi.org/10.3390/ ijms17050761.
35. Eyries M., Montani D., Girerd B. et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nature genetics. 2014; 46(1): 65-69, /https://doi. org/10.1038/ng.2844.
36. Montani D., Girerd B., Jais X. et al. Clinical phenotypes and outcomes of heritable and sporadic pulmonary veno-occlusive disease: a population-based study. Lancet Resp. Med. 2017; 5(2): 125-134, /https://doi.org/10.1016/S2213-2600(16)30438-6.
37. Navas Tejedor P., Palomino Doza J., Tenorio Castano J.A. et al. Variable Expressivity of a Founder Mutation in the EIF2AK4 Gene in Hereditary Pulmonary Veno-occlusive Disease and Its Impact on Survival. Rev. Esp. Cardiol (Engl Ed). 2018; 71(2): 86-94, /https://doi. org/10.1016/j.rec.2017.03.034.
38. Hoeper M.M., Kramer T., Pan Z. et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur. Res. J. 2017; 50(2), /https://doi.org/10.1183/13993003.00740-2017.
39. Kylhammar D., Kjellstrom B., Hjalmarsson C. et al. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur. Heart. J. 2017; /https://doi. org/10.1093/eurheartj/ehx257.
40. Boucly A., Weatherald J., Savale L. et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur. Res. J. 2017; 50(2), /https://doi. org/10.1183/13993003.00889-2017.