Роль полиморфизмов аллельных вариантов rs1333049 локуса хромосомы 9p21.3 в генезе кардиоваскулярных заболеваний
С. Ю. Никулина
Красноярский государственный медицинский университет им. проф. В. Ф. Войно-Ясенецкого
А. А. Чернова
Д. А. Никулин
И. М. Платунова
Д. А. Яковлева
А. Н. Келеменева

Ключевые слова

инфаркт миокарда
однонуклеотидный полиморфизм
rs1333049
локус 9р21.3
атеросклероз

Как цитировать

Никулина, С. Ю., Чернова, А. А., Никулин, Д. А., Платунова, И. М., Яковлева, Д. А., & Келеменева, А. Н. (2018). Роль полиморфизмов аллельных вариантов rs1333049 локуса хромосомы 9p21.3 в генезе кардиоваскулярных заболеваний. КРЕМЛЕВСКАЯ МЕДИЦИНА<br><i>клинический вестник</I&gt;, (4), 42-45. извлечено от http://kremlin-medicine.ru/index.php/km/article/view/1305

Аннотация

В статье проведено описание ассоциативных связей 9 хромосомы с различными сердечно-сосудистыми заболеваниями. Установлена роль локуса 9р21.3 в предрасположенности к развитию острого коронарного синдрома у европеоидной расы и в России. Небольшой участок генома (размером около 58kb), расположенный на коротком плече 9 хромосомы (локус 9р21.3) имеет сильные ассоциативные связи с возникновением острого инфаркта миокарда (ОИМ). В этом регионе отсутствуют гены, кодирующие белки, некодирующая регуляторная рибонуклеиновая кислота ANRIL расположена именно там,  и это делает затруднительным интерпретацию взаимосвязи локуса 9р21.3 с ишемической болезнью сердца (ИБС) и ОИМ. Развитие ИБС происходит за счет клеточной пролиферации в некодируемом участке РНК.

Литература

1. H. Schunkert, A. Götz, P. Braund et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008; 117( 3): 1675-1684.
2. E. Biros, M. Cooper, L. J. Palmer et al. Association of an allele on chromosome 9 and abdominal aortic aneurysm. Atherosclerosis. 2010; 212 ( 2): 539-542.
3. Y. Wei, J. Xiong, S. Zuo et al. Association of polymorphisms on chromosome 9p21.3 region with increased susceptibility of abdominal aortic aneurysm in a Chinese Han population. J. Vasc. Surg. 2014; 59 (4): 879-885.
4. M. J. Bown, P. S. Braund, J. Thompson et al. Association between the coronary artery disease risk locus on chromosome 9p21.3 and abdominal aortic aneurysm . Circ. Cardiovasc. Genet. 2008; 1(1): 39-42.
5. D. Girelli, N. Martinelli, F. Peyvandi et al.Genetic architecture of coronary artery disease in the genome-wide era: implications for the emerging “golden dozen” loci. Semin. Thromb. Hemost. 2009; 35(7): 671-682.
6. Y. Gong, A. L. Beitelshees, R. M. Cooper-DeHoff et al.Chromosome 9p21 haplotypes and prognosis in white and black patients with coronary artery disease. Circ. Cardiovasc. Genet. 2011;4 ( 2) : 169-178.
7. L. Gong, J. Chen, J. Lu et al. The 9p21 locus is associated with coronary artery disease and cardiovascular events in the presence (but not in the absence) of coronary calcification. Plos One. 2014; 9 (4): e94823.
8. C. Cluett, M. M. McDermott, J. Guralnik et al. The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ. Cardiovasc. Genet. 2009; 2( 4): 347-353.
9. J. M. Murabito, C. C. White, M. Kavousi et al. Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ. Cardiovasc. Genet. 2012; 5 (1): 100-112.
10. S. Phababpha, U. Kukongviriyapan, P. Pakdeechote et al. Association of arterial stiffness with single nucleotide polymorphism rs1333049 and metabolic risk factors. Cardiovasc. Diabetol. 2013; 12: 93
11. B. Bayoglu, H. A. Cakmak, H. Yuksel et al. Chromosome 9p21 rs10757278 polymorphism is associated with the risk of metabolic syndrome. Mol. Cel. Biochem. 2013; 379 (1-2): 77-85.
12. Максимов В.Н., Куликов И.В., Орлов П.С. и др. Проверка взаимосвязи между девятью однонуклеотидными полиморфизмами и инфарктом миокарда на сибирской популяции. Вестник РАМН 2012; 5: 24–29.
13. Шестерня П.А., Шульман В.А., Никулина С.Ю. и др. Предикторная роль полиморфизмов хромосомы 9р21.3 и их взаимосвязь с отягощенной наследственностью в развитии инфаркта миокарда. Российский Кардиологический Журнал 2012; 6(98): 14–8.
14. Schunkert H., Erdmann J., Samani N.J. Genetics of myocardial infarction: a progress report. Eur Heart J 2010; 31(8): 918–25.
15. Buysschaert I., Carruthers K.F., Dunbar D.R. et al. A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: The GRACE Genetics Study. Eur Heart J 2010; 31: 1132–41.
16. Dandona S., Stewart A.F.R., Chen L. et al. Gene dosage of the common variant 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol 2010; 56: 479–86.
17. Patel R.S., Su S., Neeland I.J. et al. The chromosome 9p21 risk locus is associated with angiographic and progression of coronary artery disease. Eur Heart J 2010; 31: 3017–23.
18. Chan K., MotterleA., Laxton R.C. et al. Common variant on chromosome 9p21 predict severity of coronary artery disease. J Am Coll Cardiol 2011; 57: 1497–8.
19. Adrissino D., Berzuini C., Merlini P.A. et al. Influence of 9p21.3 genetic variants on clinical and angiographic outcomes in early-onset myocardial infarction. J Am Coll Cardiol 2011; 58(4): 426–34.
20. Genome-wide association analysis of coronary artery disease. N. J. Samani, J. Erdmann, A. S. Hall et al. N. Engl. J. Med. 2007; 357(5): 443-453.
21. A common allele on chromosome 9 associated with coronary heart disease .R. McPherson, A. Pertsemlidis, N. Kavaslar et al. Science. 2007; 316 (5830): 1488-1491.
22. McPherson, R. Chromosome 9p21.3 locus for coronary artery disease R. McPherson. J. Am. Coll. Cardiol. 2013; 62( 15): 1382-1383.
23. B. D. Horne, J. F. Carlquist, J. B. Muhlestein et al. Association of variation in the chromosome 9p21 locus with myocardial infarction versus chronic coronary artery disease. Circ. Cardiovasc. Genet. 2008; 1( 2): 85-92.
24. A. Helgadottir, G. Thorleifsson, A. Manolescu et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007; 316 (5830):1491-1493.
25. Q. Zeng, Y. Yuan, S. Wang et al. Polymorphisms on chromosome 9p21 confer a risk for acute coronary syndrome in a Chinese Han population. Can. J. Cardiol. 2013; 29 (8): 940-944.
26. Q. Zhang, X. F. Wang, S. S. Cheng .et al. Three SNPs on chromosome 9p21 confer increased risk of myocardial infarction in Chinese subjects. Atherosclerosis. 2009; 207(1): 26-28.
27. J. Guo, W. Li, Z. Wu et al. Association between 9p21.3 genomic markers and coronary artery disease in East Asians: a meta-analysis involving 9,813 cases and 10,710 controls. Mol Biol Rep; 2013; 40 (1): 337-343.
28. H. Haslacher, T. Perkmann, F. Ratzinger et al. 9p21.3 risk locus is associated with first-ever myocardial infarction in an Austrian cohort. Journal of Cardiovascular Medicine. 2016; 17(8): 595-600.
29. W. Meng, A. E. Hughes, C. C. Patterson et al. Chromosome 9p21.3 is associated with early-onset coronary heart disease in the Irish population. Dis. Markers. 2008; 25(2): 81-85.
30. R. Farzaneh-Far, B. Na, N. B. Schiller et al. Lack of association of chromosome 9p21.3 genotype with cardiovascular structure and function in persons with stable coronary artery disease: the heart and soul study. Atherosclerosis. 2009; 205(2): 492-496.
31. B. D. Horne, J. F. Carlquist, J. B. Muhlestein et al. Associations with myocardial infarction of six polymorphisms selected from a three-stage genome-wide association study. Am. Heart J. 2007; 154 (5): 969-975.
32. A. F. Stewart, S. Dandona, L. Chen et al. Kinesin family member 6 variant Trp719Arg does not associate with angiographically defined coronary artery disease in the Ottawa Heart Genomics Study. J. Am. Coll. Cardiol. 2009; 53 (16):1471-1472.
33. D. Saleheen, M. Alexander, A. Rasheed et al. Association of the 9p21.3 locus with risk of first-ever myocardial infarction in pakistanis: Case-control study in south asia and updated meta-analysis of Europeans. Arterioscler. Thromb. Vasc. Biol. 2010; 30 (7): 1467-1473.
34. M. Junyent, K. L. Tucker, J. Shen et al. A composite scoring of genotypes discriminates coronary heart disease risk beyond conventional risk factors in the Boston Puerto Rican Health Study . Nutr. Metab. Cardiovasc. Dis. 2010; 20, (3): 157-164.
35. J. van Setten, I. Isgum, J. Smolonska et al. Genome-wide association study of coronary and aortic calcification implicates risk loci for coronary artery disease and myocardial infarction. Atherosclerosis. 2013; 228 (2): 400-405.
36. N. Yiannakouris, M. Katsoulis, V. Dilis .et al. Genetic predisposition to coronary heart disease and stroke using an additive genetic risk score: A population-based study in Greece. Atherosclerosis. 2012; 222(1): 175-179.
37. W. Koch, P. Hoppmann, A. Schömig et al. Variations of specific non-candidate genes and risk of myocardial infarction: A replication study. Int. J. Cardiol. 2011; 147(1): 38-41.
38. W. Koch, S. Türk, A. Erl et al. The chromosome 9p21 region and myocardial infarction in a European population. Atherosclerosis. 2011; 217(1): 220-226.
39. D. Arasaratnam, D. Elliott, T. Medley et al. The association of chromosome 9p21 variation and coronary artery disease replicated in an Australian Cohort. Heart Lung Circ. 2012; 21(1): S272-S272.
40. K. Hinohara, T. Nakajima, M. Takahashi et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. J. Hum. Genet. 2008; 53 (4): 357-359.
41. G. Q. Shen, L. Li, S. Rao et al. Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2008; 28 (2): 360-365.
42. T. Pinós, N. Fuku, Y. Cámara et al. The rs1333049 polymorphism on locus 9p21.3 and extreme longevity in Spanish and Japanese cohorts. Age (Dordr.). 2014; 36, (2): 933-943.
43. A. A. Bhanushali, A. Contractor, B. R. Das. Variant at 9p21 rs1333049 is associated with age of onset of coronary artery disease in a Western Indian population: a case control association study. Genet. Res. (Camb.). 2013; 95 (5). 138-145.
44. J. Shanker, P. Arvind, S. Jambunathan et al. Genetic analysis of the 9p21.3 CAD risk locus in Asian Indians. Thromb. Haemost. 2014. 111 (5). 960-969.
45. M. D. Jansen, G. P. Knudsen, R. Myhre. Genetic variants in loci 1p13 and 9p21 and fatal coronary heart disease in a Norwegian case-cohort study. Mol. Biol. Rep. 2014; 41 (5). 2733-2743.
46. V. N. Maksimov, I. V. Kulikov, P. S. Orlov et al. Evaluation of association between 9 genetic polymorphism and myocardial infarction in the Siberian population. Vestn. Ros. Akad. Med. Nauk. 2012; (5). 24-29.
47. M. Plichart, J. P. Empana, J. C. Lambert et al. Single polymorphism nucleotide rs1333049 on chromosome 9p21 is associated with carotid plaques but not with common carotid intima-media thickness in older adults. A combined analysis of the Three-City and the EVA studies. Atherosclerosis. 2012; 222 (1). 187-190.
48. M. S. Cunnington, B. M. Mayosi, D. H. Hall et al. Novel genetic variants linked to coronary artery disease by genome-wide association are not associated with carotid artery intima-media thickness or intermediate risk phenotypes. Atherosclerosis. 2009; 203 (1). 41-44.
49. A. Congrains, K. Kamide, R. Oguro et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2AB. Atherosclerosis. 2012; 220 (2). 449-455.
50. J. L. Anderson, B. D. Horne, M. J. Kolek et al. Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am. Heart J. 2008; 156, (6). 1155-1162.e2.
51. P. Hoppmann, A. Erl, S. Türk et al. No association of chromosome 9p21.3 variation with clinical and angiographic outcomes after placement of drug-eluting stents. JACC. Cardiovasc. Interv. 2009; 2 (11). 1149-1155.
52. A. Muendlein, C. H. Saely, S. Rhomberg et al. Evaluation of the association of genetic variants on the chromosomal loci 9p21.3, 6q25.1, and 2q36.3 with angiographically characterized coronary artery disease. Atherosclerosis. 2009; 205 (1). 174-180.
53. J. L. Anderson, B. D. Horne. 9p21locus and coronary heart disease: initiator, promoter, or precipitator? J. Am. Col. Cardiol. 2010; 56 (6). 487-489.
54. I. Buysschaert, K. F. Carruthers, D. R. Dunbar et al. A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: The GRACE genetics study. Eur. Heart J. 2010; 31 (9). 1132-1141.
55. M. Hara, Y. Sakata, D. Nakatani et al. Reduced risk of recurrent myocardial infarction in homozygous carriers of the chromosome 9p21 rs1333049 C risk allele in the contemporary percutaneous coronary intervention era: a prospective observational study. BMJ Open. 2014; 4 (8). e005438.
56. M. Fan, S. Dandona, R. McPherson et al. Two chromosome 9p21 haplotype blocks distinguish between coronary artery disease and myocardial infarction risk. Circ. Cardiovasc. Genet. – 2013; 6 (4). 372-380.
57. K. Chan, A. Motterle, R. C. Laxton et al. Common variant on chromosome 9p21 predicts severity of coronary artery disease. J. Am. Coll. Cardiol. 2011; 57 (13). 1497-1498.
58. R. S. Patel, F. W. Asselbergs, A. A. Quyyumi et al. Genetic variants at chromosome 9p21 and risk of first versus subsequent coronary heart disease events: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2014; 63 (21). 2234-2245.
59. R. S. Patel, S. Su, I. J. Neeland et al. The chromosome 9p21 risk locus is associated with angiographic severity and progression of coronary artery disease. Eur. Heart J. 2010; 31 (24). 3017-3023.
60. C. Erridge, J. Gracey, P. S. Braund. The 9p21 Locus Does Not Affect Risk of Coronary Artery Disease Through Induction of Type 1 Interferons. J. Am. Coll. Cardiol. 2013; 62 (15). 1376-1381.
61. S. Aschauer, F. Mittermayer, C. C. Wagner et al. Forearm vasodilator reactivity in homozygous carriers of the 9p21.3 rs1333049 G>C polymorphism. Eur. J. Clin. Invest. 2010; 40 (8). 700-705.
62. C. Lluis-Ganella, I. Subirana, G. Lucas et al. Assessment of the value of a genetic risk score in improving the estimation of coronary risk. Atherosclerosis. 2012; 222 (2). 456-463.
63. L. Gioli-Pereira, P. C. Santos, N. E. Ferreira et al. Higher incidence of death in multi-vessel coronary artery disease patients associated with polymorphisms in chromosome 9p21. BMC Cardiovasc. Disord. 2012; 12. 61.
64. A. Szpakowicz, M. Kiliszek, E. Waszkiewicz et al. Polymorphism of 9p21.3 locus is associated with 5-year survival in high-risk patients with myocardial infarction. Plos One. 2014; 9 (8). e104635.
65. L. Gioli-Pereira, P. C. Santos, N. E. Ferreira et al. Higher incidence of death in multi-vessel coronary artery disease patients associated with polymorphisms in chromosome 9p21. BMC Cardiovasc. Disord. 2012; 12. 61.
66. N. P. Paynter, D. I. Chasman, J. E. Buring et al. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann. Intern. Med. 2009; 150 (2). 65-72.
67. T. Scheffold, S. Kullmann, A. Huge et al. Six sequence variants on chromosome 9p21.3 are associated with a positive family history of myocardial infarction: a multicenter registry. BMC Cardiovasc. Disord. 2011; 11. 9.
68. M. D. Jansen, G. P. Knudsen, R. Myhre. Genetic variants in loci 1p13 and 9p21 and fatal coronary heart disease in a Norwegian case-cohort study. Mol. Biol. Rep. 2014; 41 (5). 2733-2743.
69. G. Smith, O. Melander, H. Lövkvist et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. J Circ. Cardiovasc. Genet. 2009; 2 (2). 159-164.
70. M. G. Heckman, A. I. Soto-Ortolaza, N. N. Diehl et al. Genetic variants associated with myocardial infarction in the PSMA6 gene and Chr9p21 are also associated with ischemic stroke. Eur. J. Neurol. 2013; 20, (2). 300-308.